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We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action
of multiple molecular motors attached simultaneously to more than one filament. Focusing on a
paradigm model of only two filaments interacting with multiple motors, we were able to investigate
in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor,
the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows
that the alignment time is governed by the number of bound motors and the magnitude of the
motor force fluctuations. We demonstrate that the timescale is in the order of seconds, much faster
than for passive crosslink-induced bundling. in vitro experiments on multiple-motor alignment of
microtubules are in good agreement with these results.
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Fascinating self-organizing behavior of polar biofila-
ments such as microtubules (MTs) and actin, that build
up the cytoskeleton of most cells, continues to attract
enormous attention both among biologists and physi-
cists. Recent experimental studies revealed a variety of
self-organized structures like three-dimensional gels, two-
dimensional networks, as occurring underneath the cell
membrane, aster-like patterns similar as formed during
mitosis, as well as one-dimensional bundled structures, as
found in stress fibers. While in vivo these structures are
controlled by a plethora of proteins and signaling path-
ways [1], it has been established [2] that such structures
also form in vitro in the absence of regulatory proteins.

Bundles of polar biofilaments as actin and MTs play
an important role in the cytoskeleton’s functioning and
elasticity. Bundle contraction has been investigated [3]
as well as the bundle elasticity [4], however the dynamics
of the bundle formation is not fully understood. There
are some situations, e.g. when the filaments are growing
from organizing centers in a specified direction, where
regulation and the confined geometry lead to bundling.
In vitro experiments [5] showed that crosslinks induce
bundling, and such a transition has been recently dis-
cussed theoretically [6]. However, it is generally believed
that linear molecular motors like kinesin, myosin etc.,
which convert chemical energy from adenosine triphos-
phate (ATP) hydrolysis into directed mechanical motion,
play an important role in the alignment of individual fil-
aments, which can be considered as a precursor of bundle
formation. Practically nothing is known about the dy-
namics of bundle organization due to motor activity; in
particular, what are the relevant parameters (e.g. mo-
tors concentration, processivity, etc.) determining the
characteristic time of the alignment.

In this Letter we theoretically predict and demonstrate
by complementary in vitro experiments that filaments
can be aligned due to collective action of multiple mo-
tors. Taking advantage of a highly simplified yet non-
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FIG. 1: (Color online) Sketch of two MTs interacting with
multiple motors. Motors attach with probability pa at the in-
tersection point S0, move along the tubules (in +x direction)
while exerting a spring-like force and detach with a rate pd.

trivial micromechanical model, containing only two fila-
ments interacting with multiple motors, we were able to
investigate in detail the dynamics of the filaments’ align-
ment (or zipping in the terminology of Ref. [7]). Both
theory and experiment revealed that the polar filaments
become aligned on a timescale of seconds due to the col-
lective action of the motors, which is faster by two orders
of magnitude than the alignment by passive crosslinks
(several minutes [5]). In contrast, a single motor, even if
it is highly processive, is known to lead to practically no
alignment [8]. Our model also indicates that the align-
ment time is related to the number of attached motors
and the stochastic nature of motor motion: the align-
ment time is directly related to the randomness in the
motor stepping and force.

To investigate the collective alignment of polar fila-
ments by multiple motors we focus first on the simplest
situation of a pair of two perfectly rigid rods of fixed
length L interacting with molecular motors attached to
both tubules. The number of motors N is not fixed: mo-
tors can attach with a probability pa at the intersection
point of the two rods, as well as detach from any place
with a fixed rate pd. We consider either motor oligomers
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with multiple heads, as used in Refs. [2], or multiple
motors attached to a nanoparticle as in Ref. [9]. The
motors are modeled by massless linear springs attached
perpendicular to the bisector, see Fig. 1. Due to the great
disparity in the size of biofilaments and molecular motors
(' 10 − 40µm vs. ' 100nm), the marching of a motor
attached to only one filament produces no noticeable dis-
placement of the filament. Thus we focus on the motors
attached to both filaments. As a further simplification
we consider the symmetric case, i.e. the distance S (with
−L/2 < S < L/2) of the intersection point from the cen-
ter of mass of one MT is the same for both MTs. It is
easy to see that even if motors attach asymmetrically to
two rods, it will soon assume a symmetric position [8].

The motion of the rods follows from the balance of
forces and torques exerted on the rods by the motors
and the environment (viscous drag). The torque bal-
ance leads to an equation for the intersection angle φ,
ηrφ̇ = τ , with ηr ' πηL3

3 ln(L/d) the rotational friction coeffi-
cient [10]. The total torque τ created by the motor forces
Fn (neglecting the motors’ bending rigidity Fn acts ex-
actly along the y-axis, see Fig. 1) and the drag force is
of the form τ =

∑
FnSn cos φ, with Sn the position of

the n-th motor. The motor force Fn is described by a
linear spring, Fn = −κl = −κ(Sn − S0) sin φ, where κ is
the spring constant, S0 is the position of the intersection
point of the two tubules and l = (Sn − S0) sin φ is the
spring extension. Finally we arrive at the torque balance

φ̇ =
κ

ηr
cos φ sin φ

N∑
n=1

Sn(S0 − Sn) . (1)

The equation of motion for the n-th motor is provided
by the force-velocity relation (v = dSn/dt),

Ṡn = V
[
1− κ(Sn − S0) sin2 φ/Fst

]
+ ξn(t) . (2)

Here we used a well-accepted linear force-velocity re-
lation [11, 12], V (F ) = V (1 − Fl/Fst), with a stall
force Fst. Fl is the projection of the force Fn oppos-
ing the motor motion on the direction of the rod. The
stochastic term ξn describes random fluctuations in mo-
tor stepping and force. We assume 〈ξn(t)〉 = 0 and
〈ξn(t)ξm(t′)〉 = 2Dδ(t− t′)δnm. The noise strength D re-
sulting from fluctuations in force and stepping of the mo-
tors can be estimated from experimental measurements
of the so-called “randomness parameter” [13], defined as
r = lim

t→∞
〈x(t)2〉−〈x(t)〉2

d〈x(t)〉 = 2D
dV , where d = 8nm is the mo-

tor step size. From Ref. [13] we obtain r ' 0.4, which re-
sults for V ' 0.2µm/s to the estimate D ' 3·10−4µm2/s.

Before proceeding with our analysis, we would like to
illustrate a nontrivial effect: Eqs. (2) imply an effective
attraction between the motors. Indeed, any difference in
the attachment positions has the tendency to decrease,
dS/dt = −V κS sin2 φ/Fst + ξ. This effect has a simple
interpretation: the forward motor (Si > Sj) is stretched

more and thus experiences a larger opposing force than
the trailing one. According to the force-velocity rela-
tion, the forward motor will move slower than the trailing
one, and the distance between them will decrease. Thus,
Eqs. (2) describe two competing processes: localization
of the motor distribution near the intersection point due
to attractive interaction and spreading of the distribution
due to the random force ξ.

To close the description we need an equation for the
intersection point of the rods. This we derive from the
constraint Y = −S0 sin φ and the equation of motion
for the y-coordinate of the center of mass of the tubules
ηtẎ = Fd, with the viscous drag force Fd =

∑
Fn and

ηt ' η⊥ = 4πηL
ln(L/d) [10]. For simplicity we have neglected

the anisotropy of the translational friction by letting η‖ =
η⊥ = ηt. This results immediately in ∂tX = 0, i.e. there
is no overall translation of the center of mass. Finally,
the equation for the intersection point coordinate S0 is

Ṡ0 = −κ

N∑
n=1

(
cos2 φS0

ηr
Sn(S0 − Sn) +

S0 − Sn

ηt

)
. (3)

Eqs. (1)-(3) with the attachment/detachment kinetics
can be solved by a standard Langevin scheme, the an-
gle between the tubules evolving in time as shown by
the dashed lines in Fig. 2, where the following known
parameters have been used: kinesin velocity 0.01-1µm/s
(depending on ATP concentration) [13]; kinesin spring
constant 200-400pN/µm [14]; stall force of kinesin 5-
8pN [13]; attachment/detachment rates 50s−1 and 1s−1

[15, 16]; solvent viscosity ∼ 0.005pNs/µm2; MT length
L = 10µm, and diameter 24nm.

A continuum description can be obtained in the limit
of a large number of motors attached to the two rods. In
this case, from Eq. (2) one can derive a Fokker-Planck
equation for the probability distribution function P (S, t)
to find a motor at position S at time t,

∂tP = D∂2
SP − ∂S

(
Ṽ P

)
− pdP + paδ(S−S0(t)) , (4)

with Ṽ = V [1−κ(S−S0(t)) sin2 φ/Fst] and the δ-function
ensuring attachment at the intersection point S0 only.
The equations for the angle and the intersection point
can be obtained by generalizing Eqs. (1),(3):

φ̇ =
κ

ηr
cos φ sin φ

∫
dSP (S)S(S0 − S) , (5)

Ṡ0 = −κ

∫
dSP (S)(S0 − S)

(
cos2 φS0

ηr
S +

1
ηt

)
. (6)

Eqs. (4)-(6) can be solved if one assumes that the attach-
ment/detachment kinetics is sufficiently fast compared
to the relative movement of the motors and the intersec-
tion point, i.e. pd À V/L. Then the motor distribution
P (S) is slowly varying in the frame moving along with
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FIG. 2: (Color online) The angle φ vs. time t during the
motion of multiple motors. D1 = 5 · 10−6µm2/s (with and
without force-velocity (Fv) dependence), D2 = 10−5µm2/s
and D3 = 5 · 10−5µm2/s. The dashed lines are Langevin
simulations, averaged over 10 runs, for V = 0.2µm/s, pa =
50µm/s, pd = 1/s; initial conditions φi = π/12, Si = −3µm,
see also movies 1 & in [18]

S0, P (S, t) = P (S−S0(t)). Introducing S̃ = S−S0(t) one
obtains a quasi-stationary problem,

0 = D∂2
S̃
P − (δV − αS̃)∂S̃P − (pd − α)P + paδ(S̃) , (7)

with δV = V − Ṡ0 and α = V κ sin2 φ/Fst. Eq. (7) can
be solved exactly in the absence of a force-velocity de-
pendence, i.e. if the motor force is much smaller than
the stall force, F/Fst → 0. The solutions to the left and
right of S̃ = 0 [17], have to be matched by continuity
Pl(0) = Pr(0) and by a derivative jump condition from
the δ-function. Obtained distributions are shown in [18].

In case of the load-dependent motor speed, although
the homogeneous part of Eq. (7) has an analytical solu-
tion in terms of confluent hypergeometric functions, this
solution is impractical to proceed with. By transforming
to the form without first derivative, for not too high α
the function P̄ (S) can be obtained approximately.

The integrals in Eqs. (5),(6) can be evaluated analyti-
cally, and keeping in Eq. (6) only terms in linear order in
the small variable δV , the effect of the motion of multi-
ple motors on a pair of MTs can be described by a single
effective equation for the mutual angle:

φ̇ = − cosφ sinφ
η

(
V S0 + 2D κ

ηt
f
)

1 + η cos2 φS2
0

. (8)

Here S0 = Si + V t, with Si the initial condition for the
intersection point S0 at t = 0, and we have introduced
η = ηt/ηr. Remarkably, this equation captures both the
single motor case (corresponding to f = 0 [8]), as well
as the multiple motor case (f = pa/p2

d in the absence

of a force-velocity relation, while becoming a function
of φ, to leading order f = pa

p2
d

(
1− 2V κ sin2 φ

pdFst

)
, in the

presence). For a single motor the change in the angle
is totally due to the motion of the intersection point -
governed by the term V S0, but the angle decreases if the
intersection point (the motors) is on the right side with
respect to the center of rod (S0 > 0), while increasing
if at the opposite side (S0 < 0). A global (averaged)
change in the mutual angles is thus a purely statistical
effect in this case. However, for multiple motors the small
diffusion due to force fluctuations yields the term ∼ D,
which always adds a negative contribution and thus re-
duces the angle. If this term dominates, there is fast
alignment. A comparison between the Langevin simula-
tions of Eqs. (1)-(3) and the analytical result, Eq. (8),
is shown in Fig. 2. For a not too high mutual angle,
load-dependence only slightly decreases the zipping rate.

A simple expression for the characteristic alignment
time can be obtained from Eq. (8) for small initial angles
and in the limit of dominating diffusion term, yielding
τ0 = ηrp

2
d/2Dκpa. This can be rewritten as

τ0 = ηr/rdκNlm, (9)

where N ' 2-4 is the number of motors attached to both
filaments and lm ' 1µm is the (average) single motor
runlength. For the given parameters, this evaluates to
τ0 ' 1-3 s, faster by two orders of magnitude than align-
ment by passive crosslinks, which is typically in the order
of several minutes [5].

To investigate also the effect of filament flexibility, we
performed molecular dynamics simulations [18] with fila-
ments characterized by a bending stiffness. While single
motors can already lead to loose bundles for such semi-
flexible filaments [19] since the motor force locally brings
the filaments closer together, multiple motors however
induce very fast zipping, see movies 1 & 2 in [18]. De-
pending on the diffusivity of motors on the filaments,
buckling [20] can also occur for low randomness, while it
is suppressed for large randomness.

To demonstrate the fast collective alignment, we per-
formed in vitro experiments in a similar geometry: a
bead assay was investigated as previously described [9].
Carboxylated polystyrene beads (200-nm diameter; Poly-
sciences, Warrington, PA) were incubated with kinesin-1
motors (0.9 nM). At this concentration, the beads spon-
taneously bound to and moved along glass-bound MTs,
which are often more than 15 µm long. The beads had
a very long (> 8µm) runlength (while for individual mo-
tors it is ∼ 1µm), suggesting that the surface of the beads
was decorated with a high density of kinesin motors. MT
zipping events were observed to happen when loose MT
were present. A time series of such an alignment is shown
in Fig. 3a-c, where one MT is fixed to the substrate
and another, mobile one is connected to the former by
the multiple-motor-covered beads. The mutual angle be-
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FIG. 3: MTs “zip” together due to multiple motor activ-
ity. (A-C) A sequence (for a movie see [18]), showing one
MT (black dashed line) fixed on a glass slide with a second
mobile MT (white dashed line) bound to the fixed one via
cargos (200 nm diameter polystyrene beads, arrows) carry-
ing multiple kinesin-1 motors. Panel D shows the angle be-
tween the MTs as a function of time, starting at about 60
degrees. The MTs become almost perfectly aligned within
6 seconds, though the actual zipping took approximately 5
seconds. Times are 0s, 4s, and 6s for A-C respectively. The
scale bar is 1µm.

tween the MTs as a function of time is shown in Fig. 3d.
The alignment time is found to be about 5 s, in agreement
with our prediction. Although the experimental setup is
not exactly the one of our paradigm model, this shows
convincingly that the alignment time is much faster than
in the passive, crosslink-induced case.

In conclusion, we have shown that multiple motors may
work together in order to align polar filaments, an impor-
tant precursor of bundle formation. A micromechanical
model was proposed, exhibiting that motors form a local-
ized cluster around the intersection point of MTs, propa-
gate with a velocity close to the single motor velocity and
lead to fast zipping. The number of attached motors N
as well as the randomness of the motor force appears to
be the important parameters determining alignment time
and width. Our results also can be easily generalized to
the case of motors and static crosslinks, cf. [22], and to
two populations of motors walking in opposite directions.

In contrast to the case of multiple processive motors
pulling a tube from a membrane [12], in our case a
force-velocity relation influences the results only quan-
titatively. Remarkably, the dense cluster formation does

not rely on direct interaction between the motors (e.g.
excluded volume) and is thus different from mechanisms
based on asymmetric exclusion processes proposed in
e.g. [21]. It is also different from the zipping of soft actin
filaments by non-processive motors [7]. Together with the
experimental demonstration of the fast alignment pro-
cess, the timescale of several seconds being faster than
passive bundling by crosslinks by two orders of mag-
nitude, our work thus suggests another example where
motors efficiently achieve a desired goal by working to-
gether. Future experiments, e.g. with labeled motors
are keenly needed to further explore this fascinating phe-
nomenon of collective alignment.We thank Gijsje Koen-
derink, George Shubeita and Lev Tsimring for useful dis-
cussions. F.Z. and I.S.A. acknowldege support by the US
DOE, grant DE-AC02-06CH11357, S.P.G. by the NIH
Grant 1RO1GM070676 and M.V. by the NIH Ruth L.
Kirschstein National Research Service Award postdoc-
toral fellowship.
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