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Upper critical field in dirty two-band superconductors:
Breakdown of the anisotropic Ginzburg-Landau theory
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We investigate the upper critical field in a dirty two-band superconductor within quasiclassical Usadel
equations. The regime of very high anisotropy in the quasi-2D band, relevant fop,NigBonsidered. We
show that strong disparities in pairing interactions and diffusion constant anisotropies for two bands influence
the in-planeH,, in a different way at high and low temperatures. This causes temperature-depkhgent
anisotropy, in accordance with recent experimental data in MdBe three-dimensional band most strongly
influences the in-planél., nearT., in the Ginzburg-LandayGL) region. However, due to a very large
difference between the-axis coherence lengths in the two bands, the GL theory is applicable only in an
extremely narrow temperature range n€ar The angular dependenceldf, deviates from a simple effective-
mass law even nedr. .
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I. INTRODUCTION rapid suppression of the apparent tunneling gap by small
magnetic fields has been reported. These observations can be
There is strong evidence of the multigap nature of supernaturally explained within the two-band modéf®
conducting state in the recently discoveredompound One of the most spectacular consequences of the two-
MgB,. The concept of multiband superconductivity was in-band superconductivity is the unusual behavior of anisotropy
troduced in Refs. 2,3 for the case of large disparity of thefactors for different physical parametéfsit was demon-
electron-phonon interaction for the different Fermi-surfacestrated that in clean MgBsamples the anisotropy of the
sheets. Based on this concept, a general theory of the uppeondon penetration depth?® y, has to be very different
critical field in a clean two-band superconductor with over-from the anisotropy of the upper critical fiélc’® y.,. Both
lappings andd bands was developgdee Ref. 4, and refer- anisotropy factors should strongly depend on temperature
ences therein For MgB,, first-principles calculations of the and have opposite temperature dependengigss expected
electronic structure and the electron-phonon interatidh  to increase angy. is expected to decrease with temperature.
have revealed two distinct groups of bands, namely, strongltrong temperature dependenceypf has been reliably con-
superconducting quasi-two-dimensiomabands and weakly firmed by experiment®=*Typically, y., drops from 5—6 at
superconducting three-dimensional bands. Quantitative low temperatures down te-2 nearT,.
predictions for various thermodynamic and transport proper- In this paper we consider in detail the behavior of the
ties of MgB, were made in the framework of the two-band upper critical field for different field orientations for the case
model!~14 of a dirty two-band superconductor with weak interband
A large number of experimental data, in particular scattering. The model is based on the multiband generaliza-
tunneling®>*° point contact measuremerits,*®and heat ca- tion of the quasiclassical Usadel equatidhsThe same
pacity measurement§, directly support the concept of a model has been used recently to describe vortex core struc-
double gap MgB. Intraband impurity scattering in both ture in MgB,.?> The general equations for determination of
bands may vary in large limits, while interband scattering isthe upper critical field within this model have been derived
always weak due to the disparity of- and -band wave in a recent papef However, calculations in this paper have
functions® This explains the extremely weak suppression ofbeen done only for the case of small band anisotropies. In
T. by impurities and the weak correlation betweEnand  this paper we address the case of very high anisotropy in the
the resistivity. Therefore, a unique feature of the MgB  quasi-2D band, more suitable for MgB
that the two-gap nature of superconductivity persists even in We demonstrate that the strong temperature dependence
the dirty limit for the intraband scattering rates. of the H,-anisotropy exists also in the dirty case and there-
Superconductivity in the two bands is characterized byfore represents a general property of a two-band supercon-
different energy and length scales which show up in severaductor. The main reason for this dependence is the strong
properties of a superconductor. Particularly interesting areeduction of the in-plane upper critical field by the weak
the properties of the mixed state. To@xis Abrikosov vor-  band in the very narrow temperature region n€éar This
tex structure in MgB was studied by STM in Ref. 21, which also leads to the significant upward curvature of the tempera-
probes mainly the weakly superconductingband. A large ture dependence of the in-plane upper critical field riear
vortex core size compared to estimates baseHd gnand the  This behavior illustrates the breakdown of the anisotropic
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Ginzburg-LandayGL) theory for the description of this su- +1/2) are Matsubara frequencies. Bearing in mind the appli-

perconductor. We demonstrate that, due to the large differeation to MgB, in our notation, index 1 corresponds 4o

ence between microscopic coherence lengths irctdgec-  bands and index 2 ta bands. All bands are isotropic in the

tion for the two bands, the anisotropic GL theory is xy plane,D,.=D,, and anisotropic in th&z plane with the

applicable only within the extremely narrow temperatureanisotropy ratiosy,= D, /D,,. The multigap Usadel

range neafl .. equations for general case, taking into account also interband
We analyze the angular dependence of the upper criticacattering, have been recently derived in Ref. 36.

field and show that it strongly deviates from the standard The self-consistency equation can be rewritten in the form
“effective-mass” dependence predicted by the anisotropic

GL theory. Contrary to naive expectations, these deviations
are strongest for temperatures quite closeTio (at T
~0.9T,) and only vanish for temperatures extremely close to

AITC 2
+ 1n?, (2a)

A
WlAl_leAZZZ’JTTE (Fl__l
0>0 w

T, [for (T.—T)/T.;=1%]. Theangular dependence of the A, .
upper critical field has been studied in Ref. 41 for a clean  —WaA3+W,oA,=27T >, (Fz_ — +A2In?,
two-band superconductor. It was shown that for the case of ©=0 @ ob
two weakly deformed spherical Fermi surfaces with opposite (20)
anisotropies the angular dependence also strongly deviategth the following matrixW, s

from the “effective-mass” law.

The paper is organized as follows. In Sec. Il we present —A+ AT+ A A, A+ A%+ A oA o
Usadel equations for a two-band superconductor and intro- 1= Det o Wo= Det '
duce parameters relevant for MgBn Sec. Il we derive an
equation for the upper critical field in the direction and W,,=A1,/Det, Wayy=A,;/Det, (3)
obtain the exact asymptotics at small and high temperatures.

In Sec. IV we consider the in-plane upper critical field. We A=(Ay—Ar)/2, Det=AgiAr—ApAar,
derive general equations for determination of this field and
study the solutions of these equations in different regimes. Wy Wo =Wy Wa, .

We demonstrate that the GL result for the in-plafg, is
valid only within a very narrow range of temperatures. We The electron-phonon interaction in MgBvas calculated
also numerically calculate in-plarteé., and the anisotropy from first principles in a number of papers!*?Here we use
parameteryc, in the whole temperature range. In Sec. V wethe effective coupling constantd, ; from Ref. 12: Ay,
study the angular dependence of the upper critical field ané-0.81, A ,,~0.278,A,,~0.115,A,,;~0.091, from which
analyze quantitatively the deviations from the effective-massve obtain the values oN,z used in numerical calculations
law.
W,;~0.088, W,~2.56, W;,~0.535, W,,~0.424. (4)
Il. THE MODEL: USADEL EQUATIONS

The relative role of the weak band is characterized by the
FOR A TWO-BAND SUPERCONDUCTOR

ratio S;,=W, /W,,3" which in the case of MgBis rather

We consider a two-band superconductor with weak intersmall, S;,~0.034. This ratio will be used below as a small
band impurity scattering and rather strong intraband scattefarameter in our model to derive various approximations for
ing rates exceeding the corresponding energy gaiirsy  the upper critical field. Another important small parameter is
limit). In this case the quasiclassical Usadel equatfoae  the ratio of diffusion coefficients in the bandD1,/D;, . We
applicable within each band. The mixed state in this case i%ill show in this paper that these two paramet&s and
described by the system of coupled Usadel equatforis D,,1Dyy influenceH, differently for parallel field at high
and low temperatures thus causing the temperature depen-
B dence of the anisotropy. In the following we consider sepa-
=4,G,, rately the cases when the field is parallel and perpendicular
(1g  totheab plane.

a,| 2
wF — E —[G (Vj__OAJ.) F —F VJ-G

J

lll. FIELD IN THE c-DIRECTION
Ag=27TX AgsFg, (1b) ¢
B.n

Let us first study the case when the magnetic field is ori-

wherea=1,2 is the band indeX,=x,y,z is the coordinate €nted along the axis. The upper critical field is determined

index, A is the matrix of effective coupling constants, de- by the linearized Usadel equation

fined asAa'B=)\a,B—,u2’B where A, ; are the electron-

phonon coupling constants arp:f;ﬁ are the renormalized oF,+
Coulomb pseudopotentialsD,, ; are diffusion constants,

which determine the coherence lengtfis;= D, ;27 T, and self-consistency E¢R). Solving these equations, we ar-
G,, F,, andA, are normal and anomalous Green's func-rive at the equation foHg, [symbol L denotes the field
tions and the pair potential, respectively, and=27T(s  direction perpendicular to th@b)-plang

2Hx\ 2

Do

aX

2 =4

a ®

[e3

—VIF +
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(6) using an expansion with respect to the small parameter
S;,2=W,/W,. In particular, we found very simple expres-
, (6) sions for the slope of;, at T, andH.,(0):

tH, wo | H,
2 n?_ E dHcZNdH§2 1+S DlX_DZX) (133
AT AT 2T~ |
where t=T/T,, H,=2T.®y/D,., g(X)=u(1/2+X) dardT Dix
—(1/2), andy(x) is a digamma function. We also obtain a D
relation betweer\; and Ao, nearHg, ch(o)wHiz(o)( 1+S.n D_lx) ) (13b)
2Xx
Ago= Wa1801 _ ( The signs of the above corrections to the universal curve
Wor | 1 N He, following from Eq.(8) are positive ifD,,<D 1, and negative
2 nt 9 tH, for D5, >Dy.

In the absence of coupling to the weakband WW,;=0) orin

. . . . IV. FIELD IN THE a DIRECTION
the case of identical diffusion constant®(=D,,) the up-

per critical field HZ, is given by the standard Maki—de A. General relations
Gennes equatidit*? The upper critical field in tha direction (=y direction is
S determined by the linear equations for the Green'’s functions
The well-known asymptotic solutions of this equation at low 5
and high temperatures are, respectively, wF — %VZF n DaZ<ZWHX) E =A (14)
a 2 X [e3 2 (1)0 o o
H3,(t) (e "6/4~0.140, t<1,

= 5 (9) with w=27T(s+1/2) and the self-consistency conditions
Hy 2(1-9/m*~0.2031-1), 1-t<l, (2). A technical difficulty of this problem is that, due to the
whereyg~0.577 is Euler constant. In the temperature rangdlifference in the anisotropy factors for the two bangs the

near T, one can obtain from Eq(6) the following simple harmonic; oscillator opera.tors in E¢L4) ha\{e unmatching
expression foH, for arbitrary ratioS,,=W; /W,: sets of eigenstates. We will use an expansion with respect to
¢ the eigenfunctiongLandau levels of the strong(first) band

H_éz_ 2(1+S1)(1—t) w0 :ilg,}fx), which are defined as solutions of the oscillator equa-
Hl 772(1+ SlZDZX/DlX) .
Dy, [27H\? Diy _,
At small temperaturesT<T,., Eq. (6) also has an exact s X2, — V2 =g, W,. (15)
solution (see also Ref. 36 2\ Dy 2

In particular, the eigenvalues, and ground state eigenfunc-

~ Wit Wap—In(ry) tion are given by

Hea(0) =Hg,(0)ex

2
(W;+W,—In(ry))? =D,,D ﬂ(n+1/2) (16)
* \/ : 24 : +W1In(rx)) (11 T VPP g, '
with ry=D,,/D,, . For MgB, the parametew; is small and W)= 2H mex  mHX? an
typically the inequalityW, In(r,)<[W,—In(r,) %4 is valid. In 0 v1Pg v1Py )’

this case we can expand E@.1) with respect tow,; and

obtain a much simpler result wherey,= D, /D,, are the band anisotropies. In the case

of MgB, the first band is quasi-two-dimensional, i.e;
W1In(D1y /Doy) >1,y,. Substituting expansions
W, = In(D1x/Dyy)

The 7 band strongly influences the upper critical field only if Aa(x)= ; Aan¥n(x); Fo= ; Fan¥n(X)
it is very dirty, D,,<D;,exp(—Ws,). In this limit we obtairi®

. (12

HC2(0)%H§2(0)( 1+

into Eq. (14), we obtain
He2(0)~HZ(0)exp — W)

with H{3(0)=[exp(- ye)/4]H,. Fin
For the cas&V,;<W, realized in MgB, the upper critical

field is typically determined by the strong bafekcept for ®

the limit of very small diffusivityD,, in the second bandA F. + F, —=A 18b)

small correction due to the weak band can be found from Eq. ®T2n mZ=0 Enm2m™= 22 (18b)

A1,n

wte,’

(183
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with  eqnm=((D2/2) (27rHI ®)2X>— (D, /2) V) nm-  The

only nonzero matrix elements,, are at m=n and
m=nx2:

(193

Y2 71)

mH \/DZXDZZ \/n(n_ 1) (E _ ﬂ)
@4 2 Y1 Y2
(19b

Neglecting the small ratig/; / y, in comparison withy, /7y,
we obtain

€En—2n= €pn-2=

1
€nn™~ n+§ Wo, (209
Vyn(n—1)
€En—2n= €pn-2~ " TWZ (20D

with w,=(7H/®y)D,,y,. This approximation for the ma-
trix elements is equivalent to the local approximation for the
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[

|~:z,i(Z):jzo Aij(2)Az 5,

where the matri, ;(z) is defined as solution of equations

1
Z+ E AO,j - \/FZA]_’J' = 50'1' ) (244
—Vi(i—12)A 1+ (z+2i + 1A |
_V(i+1)(i+1/2)Ai+1,j:6i,j' (24b)

Using this solution we represent the self-consistency condi-
tions for even Landau levels in the form

WA 53— WA a=A14 ¢

1 [H(4i+1)
In-—g| ——
tHl

(253

[’

1
—WoiA 1 5 +WhA, 5 :JZO Uij(t2)Az5+AzalnT

F function in thes band described in the Appendix. There- with

fore, we can rewrite the equation fBr,,, as

wFon+ fn,n—ZFZ,n—2+ fn,nFZ,n+ 6n,n+2F2,n: A2,n . (21
21

At n=0 the terme,,_,F,,_, has to be skipped. This

means that even Landau leveals=2i do not mix with the

odd Landau leveh=2i+ 1. For the calculation of the upper
critical field it is sufficient to consider only even Landau
levels. The self-consistency equations in terms of the expan-

sion coefficients are given by

1
W1A1,n_W12A2,n:27T-|_w20 w+8n_a)A1,n+Al,nln?y
(223
A 1
_W21A1n+W2A2n:27TT2 (an_ﬂ +A2n|n—.
’ ' ©>0 ’ w Tt
(22b)

To simplify the analysis further we introduce the reduced

variables

z=wlW,=t,(s+1/2), Fpi=W,F,

with t,=27T/w,=2d,T/(HD,,y,) andsis the Matsubara
index. Then equations fd?z,i(z) are given by

1\ -
2+ 5 |Fo0 (IN2)F21= A2, (233

—\i(i—12F,; 1+ (z+2i+ 12F,;
—J(i+1)(i+12)F 5 1=A55. (23b)

The formal solution of Eq(23) is given by

(25b)
Hl = ﬁ (26)
Y DyDy

where| denotes the field direction parallel to theb) plane
and

o 5
Ui,j(tz)ztzsgo (Ain[tz(S'f'l/ )]_m . (27)

We again used notations=T/T, and g(x)= (1/2+x)
—¢(1/2). We show in the Appendix that; ;(t,) can also be
related with the oscillator matrix element of the function

a[x?/t,]
Ui,j(tZ):j:ch'PZi(X)l//zj(X)g[XZ/tz],

exp(— x2/2)H(x)

a4\2"!

Pa(X)=
whereH,(x) are Hermite polynomials.

B. Temperatures not close toT . : High-field approximation
in the & band

The overall behavior is determined by the value of dimen-
sionless parametdp, which depends on field and tempera-
ture. To evaluate this parameter we represent it in the form

Dy, tHY
2" D,, H '

(28)

BecauseD;,<D,, and at low temperaturdﬂsH”l, the pa-
rametert, is much smaller than unity almost in the whole
temperature range except a very narrow region figarThe
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parametert, becomes of the order of one only af(

—T)/T.~Dy,/Dy,<1. Outside this region one can replace
summation with respect to the Matsubara index Eq. (27)

by integration, which allows us to reduce it to the following
form:

Ui'j(t2)~fi’j+(|n tz_ ‘}/E_Z In 2)5|,J y

where

— ” 5i’j
fi'j_fo dz Ai,j(z _m (29)
:_4f:dx¢;2i(x)¢2]-(x)ln(x) (30)

is the universal matrix of constants particular, fo o= v
+2In2~1.96). Using this representation, we transform Eq
(25b) to the form

) +ve

(31)

©

H D,
—WpA g5 +WzAz,zi:jgo fijA2— .

In| —
HQ Dy,

+2In2 AZ,Z'

We refer to this approximation as the high-field regime in the

7 band. The last equation in combination with E§53
determines the upper critical field along tkee direction
within the *“high-field in the w-band” regime, at T,
—T)/T.>D,,/D,,. Note that in this approximation the tem-
perature dependence exists only in E853. Therefore,
once computed, matriX; ; allows us to calculate the tem-
perature dependence Hi*lz in a wide temperature range.
Excluding A 5

A=

Arz, (32

W;—|In

we also derive equations containing omly 5

| P22y o2
n{ — —~— n
Hl:‘l_Dlz e
1 (H(4i+1)
Wy In g )
t tH] S
+ Apa—> fiihss
P I T =
O T

(33

The upper critical field—|=Hﬁ2 is given by the maximum

root of the determinant of this linear system. An approximate

PHYSICAL REVIEW B68, 104503 (2003

H|(|:2 DZZ

WqIn| — —

1 (HL YA KL Dy
? Hg Dy,

SinceW; <1, the right hand side of Eq34) is small. As a
result, in the limit of smallt, the parallel critical field is
close to the solution of the Maki—de Gennes equati®n
with the effective parametdr; replaced byH”l from Eq.
(26). A small correction from the weak band can be esti-
mated at low temperatures

_ Wiy(In(Dy,/Dy,) ~ 1.96
W, +IN(D,,/Dy,)— 1.96

HL,(0)~HZh(0)| 1 (35)

‘with H3L,(0)=[exp(~ ye)/4]H] .

Combining Eqs(12) and(35) we obtain an estimate for
the anisotropy factorycz(T)=Hﬂ2(T)/Hé2(T) at low tem-
peratures

W1IN(Dypy I D1y)
W+ IN( Doy I D1y)

~ Wi(In(Dy,/Dy,) — 1.9
W, +1n(D,,/Dy,)—1.96°

Ye2(0)=~ 71( 1+

(36)

As follows from this equation, the anisotropy bf., at T
=0 is very close to the anisotropy of the first band

Ye2(0)=y1=VD1x/D1,.

To estimate the ratid,,/D;, we use the relatiorD, ,
=v?,, ;71 between the diffusion coefficien3,, ,, Fermi
velocities in the first ban@g,, , and scattering times, ,
alongx andz directions. If we assume the isotropic scatter-
ing, 714~ 712, the value ofy.,(0) is determined by the an-
isotropy of Fermi velocities in the first band/,(0)
~ D1y D1,~vg1x Vg1, Which for MgB, gives y.,(0)
~6 (see Ref. 18 The assumption of isotropic scattering can
be violated if a sizable amount gfwave scattering exists,
i.e., v, may depend on type of impurities. On the other hand,
the isotropic-scattering valug,~6 is consistent with the
experimental data on thel., anisotropy in MgB single
crystals?9-33

(37

C. Ginzburg-Landau region

In the close vicinity ofT, (exact criterion will be estab-
lished below one can solve Eq.14) using the gradient ex-

pansion
2aHXx\ ?
Al

Do

Dz
2

2
X=a

solution can be obtained neglecting coupling to the higher
Landau levels in the self-consistency equations leading to th8ubstituting this expansion into the self-consistency condi-
following equation forHﬂZ: tions and using relation 2T, - o(1/w?) = 7/4T, we obtain
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WiA ;- WA= — ( — & VIA + &,

2aHX ZA
d, 1
(383
2mHX 2A
D, 2

(38b

1
+A1|n?,

— WA +WoA,= _( — & VAT E,

1
+A2|n?

with §iiEwDai /(8T). NearT. we can look for solution for
A, in the form

Wo,
AZ% WZA]_"' 52,

whered, is a small correction, for which we obtain from Eq.

(380

1

2mHX ZA
D !

Substituting this result into Eq.389 we obtain the linear

Ginzburg-LandayGL) equation forA,

—Wi6,~ — ( — & VA&,

s o[ 2mHx)\? 1
_ngxAl—i_gz T Al_Alln?:Oy (39
0

in which the averaged coherence lengthswith i =x,z, are

defined as
. [ €11+ S1265i
e 1+S;,

(40)

PHYSICAL REVIEW B68, 104503 (2003
temperatures is close to the anisotropy of theband

ve2(0)=~ D14 /D1, while the anisotropy ratio nedr, fol-
lows from Egs.(10) and(42)

oo T) =YL=y 1+ S15D5, /D1y Y1
ezt te et ! 1+ SlZDZZ/DlZ \ 1+ 312D22/D12 .

(43)
Thus the ratioy:,(0)/v.o(T,) is roughly given by
Yc2(0) TS DD
Yer(Ta) 1+ S1,D,,1D4,. (44

The larger the ratio of transport constaris,/D,,, the
stronger the suppression @f,(T) with increasing tempera-
ture.

According to Eq.(44), strong temperature dependence of
H., anisotropy appears as an interplay of two small param-
eters: pairing interaction rati8;, and the ratio of diffusion
constantsD,/D,,%v2,71,/(v3,75,). This important prop-
erty was first pointed out in Refs. 27,28 within the clean
limit. Therefore the above effect is quite general and does not
depend on the details of the theoretical model. The main
reason is the strong reduction of the in-plane upper critical
field by the weaks band in the narrow temperature region
nearT..

We obtain now the applicability criterion for the GL ex-
pansion. Typical scales of the order parameter variation near
T, are given by the GL coherence length&®~(T)
=& /J1—t, with i=x,y and ¢ given by Eq.(40). The GL
expansion is valid until the GL coherence lengths are larger
than the corresponding microscopic coherence lengths in
both bands¢PH(T)>¢,,; . Because of the strong inequality
£1,<&,,, the most sensitive condition is

SHT)> ¢, (45)

From this equation we immediately obtain the usual GL redeading to the following condition for the GL temperature

sult for the upper critical field aT— T,

~ Do(1-t)

2= Qg E (41

range:

T—T 1
°_|_C < max( % , 812) . (46)

2z

For comparison with numerical results at lower temperatur@Because;,<¢,, and S;,<1, the applicability of the GL

we also provideHl2 in units ofH!

He 2Dy Di(1+Sp)(1-1)
H ! T2\ (Dix+ S15D2x) (D1, + S15D2;)

2
~ (11
’7T2 1+ Sl2D2Z/D12

(42

for W;<W, and D;,~D,,. Due to the strong inequality

approach is limited to an extremely narrow temperature
range neafT., i.e., the situation is very different from the
usual single-band superconductors. The comparison of the
GL asymptotic with the exact solution is shown in Fig. 1,
where the narrowness of the GL region is demonstrated in
the inset.

D. Numerical solution in the whole temperature range

In the whole temperature range, for an arbitrary value of

D,,>D,,, in the vicinity of T, the three-dimensional band the parametet,, the problem can be solved numerically. The
strongly reduces the upper critical field. This reduction leadsolution consists of three stef$) the matrixA, ;(z) has to

to a strong temperature dependence of thg anisotropy
Yeo-

Let us compare anisotropy parameters at Iband near
T.. According to Eq.(37), the anisotropy ofH., at low

be found from Eqs(24) for the series of reduced Matsubara
frequenciez=t,(s+1/2), (ii) the matrixU; ; has to be com-
puted by summation over Matsubara indisg®7), and (iii )

the upper critical field has to be found as the maximum root

104503-6
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D~../D.. =100 the coupled linear equations for the Green’s functibpsin
2z "1z : . two bands
012 bz, —He
| Sk | e | Dax or ., Dul6) [27HX) 2
((g 3 s ek single band -t wFa_ 2 VxFa+ 2 ) Fa:Aa (47)
T N 0
0.08 | °*°f == .
o012 ——GL asymptotic \Q: W|th
004f |- S D,(0)=D,,cof0+D,sir0 (48)
Ve o and the self-consistency conditio(®.
0 ; : Therefore theH ., problem of the upper critical field in
0 0.2 0.4 0.6 0.8 ! tilted field reduces to the in-plard., problem by substitu-
t tion D,,—D,(6). It is convenient to introduce the angular-
FIG. 1. Temperature dependence of the upper critical field in thézlependent anisotropy parameters
a direction normalized tda-l”l defined in Eq(26). Single-band curve
is normalized to the corresponding schle. Solid circles show the (6)= / Do _ Ya (49)
dependence obtained within the “high-field in the-band” ap- Va D,(6) \/yico§0+sinzb"
proximation[Egs. (29) and (31)]. Inset: comparison between the ] )
exact solution and the GL asymptotics E42). Such defined anisotropy parameters vary from ¥ tovhen

) _ angle varies from 0 tar/2.
of the determinant of the linear system represented.by Egs. Following the route of the previous section, we again use
(256) and(25h). Due to the fa_st decreas_e_of the nond'aggm""lexpansion with respect to the Landau levels of the strong
matrix elementsU; ; for |i—j[>1, sufficient accuracy is a1 defined by Eq17) with Dy, D;(6). TheF function
achieved for dimensions of a matrix of less than 30. The ! e z
) e X ._of the strong band is given by
result of calculation of the parallel upper critical field is

shown in Fig. 1 where the rati®,,/D;,=100 relevant to Ay,
MgB, was used. Note that when plotted in reduced units, the Fin=—"7"—+
deviations of both ratiosi!,/H| andH_,/H+ from the uni- @+ en(0)
versal single band curve are sméixcept from the region with the eigenvalue
nearT., in the GL region, in accordance with the above
discussion. However, one should keep in mind the H
large difference in magnitudes of the characteristic scales en(0)=2mT gy (2n+1),
H) andH1 .

Numerically calculated temperature dependence of the an- Ha(6) 2T D,
isotr f r for several rati D, is shown in Fig. 2. =
sotropy factor for several ratid®,,/D,, is sho g 1 JD.(0) Dy

The anisotropy ratio drops with the increase of temperature,

in accordance with the estimat@4). This result agrees The matrix elements for the harmonic oscillator operator of
qualitatively with the calculations within the clean limit the weak band are given by

model in Refs. 27,28 and with recent measurements of

temperature-dependent anisotropy in Md8~23In experi- H 1 v2(8)\?
ment the change in anisotropy typically is distributed over fnn:(;TODZ(e) y1(0)| n+ 2 1+ v1(6)
wider temperature range than it is suggested by the theory.
T 1
=——[1+ +=
V. TILTED FIELDS 0(6) [1+a,(0)]|n+5
The upper critical field for magnetic field tilted at angle
with respect to the axis in the ¢y) plane is determined by _ 7H yn(n—1) _ 72(0)\?
€nn-2= " g~ 5 D20 v1(0)| 1
. . . . ’ Do 2 y1(6)
6 r E-ER0-0-0-0-0-0-0-0-0-0-0-0-C-0-0- -0 O B Y
o == 27TT[1 (0)]\/n(n—1)
> 5} i - —a - 7
D,/D,, = t2(6) 7 2
4 |00 ] with
3 —=—300 \\
B Y JCoZ 9+, ZsirPo
5 \] 4,(6)= 2Td, :2T<Do COS 0+ y; “sirré
0.0 0.2 0.4 0.6 0.8 1.0 2 HD,(0)y1(0)  HD,(cofo+ v, %sirf6)
t
yo(0)\2 1+ y; %tarfe
FIG. 2. Temperature dependence of the anisotropy of the upper a.(0)= = — .
7 (0) “tar?
critical field for several ratio®,,/D;, . 71 1+, “tarré
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Note that at arbitrary angle we cannot use inequality

PHYSICAL REVIEW B68, 104503 (2003

ol —
v2(0)/y1(6)<1 any more. The system of equations for the T/T =01
reduced F function at even Landau levelsF,, or® 51 | o T =0.95
=[27TIt,(6)]F, 5 at arbitrary tilt angle is given by = 4] | eft mass T/T =0.1
< — eff mass T/T =0.95
- 1) 2 © 3
~(1=a )i —12Fp 1+ |2+ (1t )| 2+ 5| [y T
2_
—(1=a)V(i+12)((+1)F, 1 1=A, 5 (50) ] e
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
with z=t,(68)(s+1/2). 0

At small tilt angles,#<1, one can solve Eq50) using i
perturbation theory with respect 8. The quadratic angular FIG. 3. Exam_ples of angular dependence of the upper critical
correction can be obtained neglecting coupling to the highepeld at low and high temperatures. Fits to the effective-mass depen-
Landau level. This leads to equation similar to Eg). with dence are also shown.
replacements

M) HE(0)
Ho—H (0)_L‘I’o ¢ Jcog 6+ y; %sirt 6
1 1 - ’
VD1, D1(6) D
Wy In—2 196
HyHo(6) AT D, " D 1,co 0+ Dy,
— = . —
LT Dy0)y(0) (1t @) Dy,
. o . ) Wy+In——FFF—-1.96
At small angles we obtain quadratic éhcorrections to typi- D 1,c0f0+ Dy,

cal fields (53)

In the whole angular range we calculated the upper criti-
cal field numerically following the procedure outlined in Sec.
IV D. As input parameters we have used the valugs
=6.325, y;,=0.816 which follow from the electronic band-
structure calculations in MgB We have also used the rela-
tion D,,=0.2D,,—the reason for this choice was discussed
At low temperature one can derive an exact formula forin Ref. 22. The examples of the calculated angular depen-
small-angle correction dence forT/T,=0.1 and 0.95 are shown in Fig. 3. We also
show fits to a simple effective-mass law, routinely used to

02
H1(9)“~“H1(1+(1_71_2)§),

02
H2(0>~H2(1+<1—y22>7).

Hco(0) —H¢,(0) _ 0_2 B E 2, -2 describe angular dependenceHyf, in anisotropic supercon-
H,(0) 2 AREIRL: ductorsH () = Hey/ /oS 6+ v sird. Due to the contri-

bution from thesr band, one can see significant deviations
from this law at high temperature. To enhance these devia-
tions we plot in Fig. 4 the angular dependence of the com-
bination -A( 6) = [HCZ,Z( 9)/Hc2,c]2+ [ch,x( 0)/H02,a]2 for
several temperaturéfor the effective-mass lawd(9) =1 for

all 4]. We find thatA(6)<1 always and the maximum de-

(R HWo—Wi—Inry)
VW, +W; —Inr,)%+4W,Inr,

(59)

with r,=D;,/D,,. In the case of small correction from the
weak band ¥V, Inr,<(W,—Inry)? we obtain a simpler for-

1 T T T T
mula for <1 = & e 1*
-2 -2 9 -‘:‘-.__h N 13
Heo(0) —Heo(0) 67 2, WoWi(y1 =2 %) % - e % T
— 00 . o517 o UOT ——0. By /
He2(0) 2 L (Wo—Inry? 3 =0 .
(52 L 085 “X--099 d
Io
For parameters of MgBthis formula gives an estimate al- ~ g . s i .
most identical to the exact result. 02 04 inzo(; 08 1
At large tilt angles, co$<1, inequality y,(0)<<y.(6) is S

restored and we can utilize the approximations used for the FIG. 4. Plots of the parametetd(6)=[Hc,(6)/Hcsc]?
case of in-plane field. In particular, at low temperatures ther[H_,,(6)/H,.]? vs sirfd at different temperatures revealing de-
approximate angular dependence is given by a formula simiviations from the simple effective-mass law. Left panel: tempera-

lar to EqQ.(35): tures not very close t®, . Right panel: temperature region ndar.
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0.2 anisotropy is mainly determined by the anisotropy of diffu-
sion constants in a quasi-two-dimensional band. However,
0.15t+ the anisotropy is suppressed at high temperatures. The reason
3 is that there are two important parameters, anisotropy of pair-
<(E 01k ing interaction and of diffusion constants, which enter the
S expression for the parallél ., in a different way at high and
0.05- low temperatures. This property can be expressed as the an-
isotropy of coherence length,,/¢. which decreases with
g ) : ; . increasing temperature. The same effect was earlier pointed
0 0.2 0.4 0.6 0.8 1 out in Refs. 27,28 within the clean limit and is in accordance

t with the experimental data in MgB Note that the anisotropy
of the penetration depth./\,p increases with increasing

FIG. 5. T t d d f th &, L n ) .
cmperature dependence of e Param@hac o mheratur@®2® which is another manifestation of the two-

=max,|1—A(6)| characterizing deviations from the effective-mass

dependence ofl.,. Inset shows the dependence of this parame’[elband model. . o
on theH,, anisotropy. We have also studied quantitatively the dependence of

H., on the angled between the axis and the magnetic field

viation from unity is achieved arouné~74°. At high tem-  direction. We have derived approximate expressionsfgr
peratures one can derive a very simple formula Ag®) at for small and large tilt angles of magnetic field. In the whole
small anglesg<1, A(9)~1—(1/yéL—1/y§2) 2. Quantita- angula_r range_the dependenld@z(_a) has been _calculated
tively, the deviations from the effective-mass law can benumerically using parameters typical for MgBrhis depen-
characterized by the parame®,,,=max|1—.A()|. Fig- dence deviates from the effective-mass dependence even in

ure 5 shows the temperature dependence of this paramet¥|Cinity of transition temperature demonstrating the break-
At low temperatures deviations from the effective-mass lawOWn of anisotropic GL theory. Further, we have shown that
are at the level of several percents. These deviations progre€1e temperature range of applicability of the GL theory is
sively grow with the temperature reachingl9% atT/T,  €xtremely narrow in the considered two-band case.

—0.92 and then rapidly decrease when the temperature ap- AN important issue is strong coupling correctionsHg,.
proaches the narrow GL region neBy. As the deviations " this paper the weak coupling approach was used. On the
from the effective-mass dependence have exactly the sanfner hand, it is known from work on isotropic
origin as the temperature dependence of the anisotropy, it guperconductof‘%that strong coupling corrections renormal-
interesting to correlate these deviations with the anisotropjZ€ the absolute value &f., by the factor (1 A)“, wherex
change. The inset in the Fig. 5 shows plot of the parametd € coupling constant and=2. Since electron-phonon

S8 Amax VS theH, anisotropy. One can see that the distortioncoupling in MgB, is relatively strongaccording to Ref. 12,

of the angular dependence is maximum when the anisotrop@llxl)' these corrections are important for calculatlo.n of
is approximately at the midpoint between the low- a_lbsolute value_s afl.,. However, we do not expect quallt_a-
temperature and GL limits. Experimentally, it was found thattiVeé changes in the temperature and angle dependencies of
the angular dependence f., in MgB, indeed deviates the anisotropy ratio calculated in the _prese_nt paper. Ex}en-
from the effective mass lat#® and the shape of these de- SioN of our results to the strong coupling Eliashberg regime
viations qualitatively agrees with our calculations. is an interesting subject for future work.
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band superconductor within the quasiclassical Usadel equ&- V- Dolgov, 1. I. Mazin, U. Welp, A. Rydh, M. lavarone,

tions, bearing in mind the regime of the very high anisotropy?"d G. Karapetrov. In Argonne this work was supported by
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we have assumed that the interband scattering is negligibl%og'ENG'?’s-

even in the dirty limit in both bands. Most of the MgB

samples are in the dirty limit, except for single crystals, APPENDIX: LOCAL APPROXIMATION FOR THE =

where the dirty limit conditions are fulfilled in the band BAND

but not fulfilled in thec ba.nd‘.fz still, as.argued in Ref. 22, Let us consider equation for tikefunction in the weakr

our results should be qualitatively applicable to Mgingle band

crystals, if one considers the coherence lengttas a phe-

nomenological parameter instead of expressing it via the dif- D,, [ 2HX

fusion constan®;. wFy+ T(T
We have considered the cases when the field is parallel 0

and perpendicular to the basal plane separately. We havEhe typical scale ofA,(x) variation is imposed by the strong

found that at low temperatures both critical fields are mainlyo band. This scale is given by = y,®/27wH and, due to

determined by the strong band and only weakly deviate froninequality y,> vy,, it is much larger than the length scale

the universal Maki—de Gennes result. The low-temperature,=/y,®/27H of the oscillator operator in the left side of

2 D2x

Fo— 7V§F2:A2. (A1)
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the Eq.(Al). For relevaniw’s the typical length scale d¥, Introducing the dimensionless oscillator wave functions

variation is much larger thar,. This allows us to neglect . (X), W (x)= ¢,(x/X;)/ /X1, we present these matrix ele-

the gradient term in EqAL). This approximation is equiva- ments in the dimensionless form

lent to the approximation for the matrix elements used in

Egs.(20). Then thew-bandF function is given by w
A Ui,j(tz):j dXpi(X) 2, (X) 9LX21t5 ],

2 —o0
D,, [ 27HX\?
2| @,

Substituting this expression into the second self consisten
equation, we represent it in the form

F2:

(A2)

] where, again 14=(D,,/D;,)(H/tH;). In particular,y(X)

= Yexp(=x%42). In the “high-field in 7-band” regime,
%<1, one can use asymptotighx?/t,]~2 In(x)—In t,+ e
+21In2 and obtain

1
_W21A1+W2A2= ( |nT_g

As. Up(t)=Ffij+(Int,— ye—21n2) 8,
(A3)

It has to be solved together with equations For and the
first self-consistency equation. Using expansion with respect
to eigenfunctions of the- band¥ ,(x), this equation reduces

to the form of linear equatiot25b), in which the matrixU; ; In particular,
is given by the matrix elements

Dy, [2mwHX)\?2
47TT (1)0

f=—4 | @ R inG.

D,, [27HX\? . o~
dxexp(—x“)In(x)=yg+2In2~1.9635.

47T (I)o

4
T

f0,0: - \/—_

U j=— J dxW (X)W (x)g
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