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Upper critical field in dirty two-band superconductors:
Breakdown of the anisotropic Ginzburg-Landau theory
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We investigate the upper critical field in a dirty two-band superconductor within quasiclassical Usadel
equations. The regime of very high anisotropy in the quasi-2D band, relevant for MgB2, is considered. We
show that strong disparities in pairing interactions and diffusion constant anisotropies for two bands influence
the in-planeHc2 in a different way at high and low temperatures. This causes temperature-dependentHc2

anisotropy, in accordance with recent experimental data in MgB2. The three-dimensional band most strongly
influences the in-planeHc2 near Tc , in the Ginzburg-Landau~GL! region. However, due to a very large
difference between thec-axis coherence lengths in the two bands, the GL theory is applicable only in an
extremely narrow temperature range nearTc . The angular dependence ofHc2 deviates from a simple effective-
mass law even nearTc .

DOI: 10.1103/PhysRevB.68.104503 PACS number~s!: 74.20.2z, 74.25.Op
e

in
th
c
pp
er
-

g

e
d

ar

a
h

i

o

n

b
er
a

h

all
n be

wo-
opy

e

ture

re.
-

he
se
nd
liza-

truc-
of
ed
e
. In
the

ence
re-
con-
ong

era-

pic
I. INTRODUCTION

There is strong evidence of the multigap nature of sup
conducting state in the recently discovered1 compound
MgB2. The concept of multiband superconductivity was
troduced in Refs. 2,3 for the case of large disparity of
electron-phonon interaction for the different Fermi-surfa
sheets. Based on this concept, a general theory of the u
critical field in a clean two-band superconductor with ov
lappings andd bands was developed~see Ref. 4, and refer
ences therein!. For MgB2, first-principles calculations of the
electronic structure and the electron-phonon interaction5–10

have revealed two distinct groups of bands, namely, stron
superconducting quasi-two-dimensionals bands and weakly
superconducting three-dimensionalp bands. Quantitative
predictions for various thermodynamic and transport prop
ties of MgB2 were made in the framework of the two-ban
model.11–14

A large number of experimental data, in particul
tunneling,15,16 point contact measurements,17–19 and heat ca-
pacity measurements,20 directly support the concept of
double gap MgB2. Intraband impurity scattering in bot
bands may vary in large limits, while interband scattering
always weak due to the disparity ofs- and p-band wave
functions.14 This explains the extremely weak suppression
Tc by impurities and the weak correlation betweenTc and
the resistivity. Therefore, a unique feature of the MgB2 is
that the two-gap nature of superconductivity persists eve
the dirty limit for the intraband scattering rates.

Superconductivity in the two bands is characterized
different energy and length scales which show up in sev
properties of a superconductor. Particularly interesting
the properties of the mixed state. Thec-axis Abrikosov vor-
tex structure in MgB2 was studied by STM in Ref. 21, whic
probes mainly the weakly superconductingp band. A large
vortex core size compared to estimates based onHc2 and the
0163-1829/2003/68~10!/104503~11!/$20.00 68 1045
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rapid suppression of the apparent tunneling gap by sm
magnetic fields has been reported. These observations ca
naturally explained within the two-band model.22,23

One of the most spectacular consequences of the t
band superconductivity is the unusual behavior of anisotr
factors for different physical parameters.24 It was demon-
strated that in clean MgB2 samples the anisotropy of th
London penetration depth25,26 gl has to be very different
from the anisotropy of the upper critical field27,28 gc2. Both
anisotropy factors should strongly depend on tempera
and have opposite temperature dependencies:gl is expected
to increase andgc2 is expected to decrease with temperatu
Strong temperature dependence ofgc2 has been reliably con
firmed by experiment.29–34Typically, gc2 drops from 5–6 at
low temperatures down to;2 nearTc .

In this paper we consider in detail the behavior of t
upper critical field for different field orientations for the ca
of a dirty two-band superconductor with weak interba
scattering. The model is based on the multiband genera
tion of the quasiclassical Usadel equations.35 The same
model has been used recently to describe vortex core s
ture in MgB2.22 The general equations for determination
the upper critical field within this model have been deriv
in a recent paper.36 However, calculations in this paper hav
been done only for the case of small band anisotropies
this paper we address the case of very high anisotropy in
quasi-2D band, more suitable for MgB2.

We demonstrate that the strong temperature depend
of the Hc2-anisotropy exists also in the dirty case and the
fore represents a general property of a two-band super
ductor. The main reason for this dependence is the str
reduction of the in-plane upper critical field by the weakp
band in the very narrow temperature region nearTc . This
also leads to the significant upward curvature of the temp
ture dependence of the in-plane upper critical field nearTc .
This behavior illustrates the breakdown of the anisotro
©2003 The American Physical Society03-1
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Ginzburg-Landau~GL! theory for the description of this su
perconductor. We demonstrate that, due to the large di
ence between microscopic coherence lengths in thec direc-
tion for the two bands, the anisotropic GL theory
applicable only within the extremely narrow temperatu
range nearTc .

We analyze the angular dependence of the upper cri
field and show that it strongly deviates from the stand
‘‘effective-mass’’ dependence predicted by the anisotro
GL theory. Contrary to naive expectations, these deviati
are strongest for temperatures quite close toTc ~at T
;0.9Tc) and only vanish for temperatures extremely close
Tc @for (Tc2T)/Tc&1%]. The angular dependence of th
upper critical field has been studied in Ref. 41 for a cle
two-band superconductor. It was shown that for the cas
two weakly deformed spherical Fermi surfaces with oppo
anisotropies the angular dependence also strongly dev
from the ‘‘effective-mass’’ law.

The paper is organized as follows. In Sec. II we pres
Usadel equations for a two-band superconductor and in
duce parameters relevant for MgB2. In Sec. III we derive an
equation for the upper critical field in thec direction and
obtain the exact asymptotics at small and high temperatu
In Sec. IV we consider the in-plane upper critical field. W
derive general equations for determination of this field a
study the solutions of these equations in different regim
We demonstrate that the GL result for the in-planeHc2 is
valid only within a very narrow range of temperatures. W
also numerically calculate in-planeHc2 and the anisotropy
parametergc2 in the whole temperature range. In Sec. V w
study the angular dependence of the upper critical field
analyze quantitatively the deviations from the effective-m
law.

II. THE MODEL: USADEL EQUATIONS
FOR A TWO-BAND SUPERCONDUCTOR

We consider a two-band superconductor with weak in
band impurity scattering and rather strong intraband sca
ing rates exceeding the corresponding energy gaps~dirty
limit !. In this case the quasiclassical Usadel equations35 are
applicable within each band. The mixed state in this cas
described by the system of coupled Usadel equations22,35

vFa2(
j

Da, j

2 FGaS ¹j2
2p i

F0
Aj D 2

Fa2Fa¹ j
2GaG5DaGa ,

~1a!

Da52pT(
b,n

LabFb , ~1b!

wherea51,2 is the band index,j 5x,y,z is the coordinate

index, L̂ is the matrix of effective coupling constants, d
fined asLa,b 5la,b 2ma,b* where la,b are the electron-
phonon coupling constants andma,b* are the renormalized
Coulomb pseudopotentials,Da, j are diffusion constants
which determine the coherence lengthsja, j5ADa, j /2pTc,
Ga , Fa , andDa are normal and anomalous Green’s fun
tions and the pair potential, respectively, andv52pT(s
10450
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11/2) are Matsubara frequencies. Bearing in mind the ap
cation to MgB2, in our notation, index 1 corresponds tos
bands and index 2 top bands. All bands are isotropic in th
xy plane,Dax5Day and anisotropic in thexz plane with the
anisotropy ratiosga5ADax /Daz. The multigap Usadel
equations for general case, taking into account also interb
scattering, have been recently derived in Ref. 36.

The self-consistency equation can be rewritten in the fo

W1D12W12D252pT (
v.0

S F12
D1

v D1D1ln
Tc

T
, ~2a!

2W21D11W2D252pT (
v.0

S F22
D2

v D1D2ln
Tc

T
,

~2b!

with the following matrixWab

W15
2A1AA21L12L21

Det
, W25

A1AA21L12L21

Det
,

W125L12/Det, W215L21/Det, ~3!

A5~L112L22!/2, Det5L11L222L12L21,

W1W25W12W21.

The electron-phonon interaction in MgB2 was calculated
from first principles in a number of papers.7,11,12Here we use
the effective coupling constantsLa,b from Ref. 12: L11
'0.81,L22'0.278,L12'0.115,L21'0.091, from which
we obtain the values ofWab used in numerical calculation

W1'0.088, W2'2.56, W12'0.535, W21'0.424. ~4!

The relative role of the weak band is characterized by
ratio S12[W1 /W2,37 which in the case of MgB2 is rather
small, S12'0.034. This ratio will be used below as a sma
parameter in our model to derive various approximations
the upper critical field. Another important small parameter
the ratio of diffusion coefficients in thes bandD1z /D1x . We
will show in this paper that these two parametersS12 and
D1z /D1x influenceHc2 differently for parallel field at high
and low temperatures thus causing the temperature de
dence of the anisotropy. In the following we consider se
rately the cases when the field is parallel and perpendic
to theab plane.

III. FIELD IN THE c-DIRECTION

Let us first study the case when the magnetic field is o
ented along thec axis. The upper critical field is determine
by the linearized Usadel equation

vFa1
Dax

2 F2¹x
2Fa1S 2pHx

F0
D 2

FaG5Da ~5!

and self-consistency Eq.~2!. Solving these equations, we a
rive at the equation forHc2

' @symbol' denotes the field
direction perpendicular to the~ab!-plane#
3-2
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ln
1

t
2gS Hc2

'

tH1
D 52

W1F ln
1

t
2gS Hc2

'

tH2
D G

W22F ln
1

t
2gS Hc2

'

tH2
D G , ~6!

where t5T/Tc , Ha[2TcF0 /Dax , g(x)5c(1/21x)
2c(1/2), andc(x) is a digamma function. We also obtain
relation betweenD01 andD02 nearHc2

'

D025
W21D01

W22 ln
1

t
1gS Hc2

'

tH2
D . ~7!

In the absence of coupling to the weakp band (W150) or in
the case of identical diffusion constants (D1x5D2x) the up-
per critical field Hc2

s is given by the standard Maki–d
Gennes equation39,40

ln~1/t !5g@Hc2
s /~ tH1!#. ~8!

The well-known asymptotic solutions of this equation at lo
and high temperatures are, respectively,

Hc2
s ~ t !

H1
5H e2gE/4'0.140, t!1,

2~12t !/p2'0.203~12t !, 12t!1,
~9!

wheregE'0.577 is Euler constant. In the temperature ran
near Tc one can obtain from Eq.~6! the following simple
expression forHc2

' for arbitrary ratioS12[W1 /W2:

Hc2
'

H1
5

2~11S12!~12t !

p2~11S12D2x /D1x!
. ~10!

At small temperatures,T!Tc , Eq. ~6! also has an exac
solution ~see also Ref. 36!

Hc2~0!5Hc2
s ~0!expS 2

W11W22 ln~r x!

2

1A~W11W22 ln~r x!!2

4
1W1ln~r x! D ~11!

with r x[D1x /D2x . For MgB2 the parameterW1 is small and
typically the inequalityW1ln(rx)!@W22ln(rx)#

2/4 is valid. In
this case we can expand Eq.~11! with respect toW1 and
obtain a much simpler result

Hc2~0!'Hc2
s ~0!S 11

W1ln~D1x /D2x!

W22 ln~D1x /D2x!
D . ~12!

Thep band strongly influences the upper critical field only
it is very dirty,D2x!D1xexp(2W2). In this limit we obtain38

Hc2~0!'Hc2
(2)~0!exp~2W2!

with Hc2
(2)(0)[@exp(2gE)/4#H2.

For the caseW1!W2 realized in MgB2, the upper critical
field is typically determined by the strong band~except for
the limit of very small diffusivityD2x in the second band!. A
small correction due to the weak band can be found from
10450
e

q.

~6! using an expansion with respect to the small param
S12[W1 /W2. In particular, we found very simple expres
sions for the slope ofHc2 at Tc andHc2(0):

dHc2

dT
'

dHc2
s

dT S 11S12

D1x2D2x

D1x
D , ~13a!

Hc2~0!'Hc2
s ~0!S 11S12ln

D1x

D2x
D . ~13b!

The signs of the above corrections to the universal cu
following from Eq.~8! are positive ifD2x,D1x and negative
for D2x.D1x .

IV. FIELD IN THE a DIRECTION

A. General relations

The upper critical field in thea direction ([y direction! is
determined by the linear equations for the Green’s functi
Fa in two bands

vFa2
Dax

2
¹x

2Fa1
Daz

2 S 2pHx

F0
D 2

Fa5Da ~14!

with v52pT(s11/2) and the self-consistency condition
~2!. A technical difficulty of this problem is that, due to th
difference in the anisotropy factors for the two bandsga , the
harmonic oscillator operators in Eq.~14! have unmatching
sets of eigenstates. We will use an expansion with respe
the eigenfunctions~Landau levels! of the strong~first! band
Cn(x), which are defined as solutions of the oscillator equ
tion

D1z

2 S 2pH

F0
D 2

x2Cn2
D1x

2
¹x

2Cn5«nCn . ~15!

In particular, the eigenvalues«n and ground state eigenfunc
tion are given by

«n5AD1zD1x

2pH

F0
~n11/2!, ~16!

C0~x!5S 2H

g1F0
D 1/4

expS 2
pHx2

g1F0
D , ~17!

wherega5ADax /Daz are the band anisotropies. In the ca
of MgB2 the first band is quasi-two-dimensional, i.e.,g1
@1,g2. Substituting expansions

Da~x!5(
n

Da,nCn~x!; Fa5(
n

Fa,nCn~x!

into Eq. ~14!, we obtain

F1,n5
D1,n

v1«n
, ~18a!

vF2,n1 (
m50

`

enmF2,m5D2,n ~18b!
3-3
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with enm5^(D2z/2)(2pH/F0)2x22(D2x/2)¹x
2&nm . The

only nonzero matrix elementsenm are at m5n and
m5n62:

enn5
pH

F0
AD2xD2zS n1

1

2D S g2

g1
1

g1

g2
D , ~19a!

en22,n5en,n225
pHAD2xD2z

F0

An~n21!

2 S g2

g1
2

g1

g2
D .

~19b!

Neglecting the small ratiog1 /g2 in comparison withg2 /g1
we obtain

enn'S n1
1

2Dw2 , ~20a!

en22,n5en,n22'2
An~n21!

2
w2 ~20b!

with w2[(pH/F0)D2zg1. This approximation for the ma
trix elements is equivalent to the local approximation for t
F function in thep band described in the Appendix. Ther
fore, we can rewrite the equation forF2n as

vF2n1en,n22F2,n221en,nF2,n1en,n12F2,n5D2,n .
~21!

At n50 the term en,n22F2,n22 has to be skipped. This
means that even Landau levelsn52i do not mix with the
odd Landau leveln52i 11. For the calculation of the uppe
critical field it is sufficient to consider only even Landa
levels. The self-consistency equations in terms of the exp
sion coefficients are given by

W1D1,n2W12D2,n52pT (
v.0

S 1

v1«n
2

1

v DD1,n1D1,nln
1

t
,

~22a!

2W21D1,n1W2D2,n52pT (
v.0

S F2,n2
D2,n

v D1D2,nln
1

t
.

~22b!

To simplify the analysis further we introduce the reduc
variables

z5v/w25t2~s11/2!, F̃2,i5w2F2,2i

with t2[2pT/w2[2F0T/(HD2zg1) ands is the Matsubara
index. Then equations forF̃2,i(z) are given by

S z1
1

2D F̃2,02~1/A2!F̃2,15D2,0, ~23a!

2Ai ~ i 21/2!F̃2,i 211~z12i 11/2!F̃2,i

2A~ i 11!~ i 11/2!F̃2,i 115D2,2i . ~23b!

The formal solution of Eq.~23! is given by
10450
n-

F̃2,i~z!5(
j 50

`

Ai , j~z!D2,2j ,

where the matrixAi , j (z) is defined as solution of equation

S z1
1

2DA0,j2A1/2A1,j5d0,j , ~24a!

2Ai ~ i 21/2!Ai 21,j1~z12i 11/2!Ai , j

2A~ i 11!~ i 11/2!Ai 11,j5d i , j . ~24b!

Using this solution we represent the self-consistency con
tions for even Landau levels in the form

W1D1,2i2W12D2,2i5D1,2iF ln
1

t
2gS H~4i 11!

tH1
i D G ,

~25a!

2W21D1,2i1W2D2,2i5(
j 50

`

Ui , j~ t2!D2,2j1D2,2i ln
1

t
~25b!

with

H1
i [

2TcF0

AD1zD1x

, ~26!

wherei denotes the field direction parallel to the~ab! plane
and

Ui , j~ t2!5t2(
s50

` S Ai , j@ t2~s11/2!#2
d i , j

t2~s11/2! D . ~27!

We again used notationst5T/Tc and g(x)[c(1/21x)
2c(1/2). We show in the Appendix thatUi , j (t2) can also be
related with the oscillator matrix element of the functio
g@x2/t2#

Ui , j~ t2!5E
2`

`

dxc2i~x!c2 j~x!g@x2/t2#,

cn~x!5
exp~2x2/2!Hn~x!

p1/4A2nn!
,

whereHn(x) are Hermite polynomials.

B. Temperatures not close toTc : High-field approximation
in the p band

The overall behavior is determined by the value of dime
sionless parametert2, which depends on field and temper
ture. To evaluate this parameter we represent it in the fo

t25
D1z

D2z

tH1
i

H
. ~28!

BecauseD1z!D2z and at low temperaturesH&H1
i , the pa-

rametert2 is much smaller than unity almost in the who
temperature range except a very narrow region nearTc . The
3-4
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parametert2 becomes of the order of one only at (Tc

2T)/Tc;D1z /D2z!1. Outside this region one can repla
summation with respect to the Matsubara indexs in Eq. ~27!
by integration, which allows us to reduce it to the followin
form:

Ui , j~ t2!' f i , j1~ ln t22gE22 ln 2!d i , j ,

where

f i , j5E
0

`

dzS Ai , j~z!2
d i , j

z11D ~29!

524E
0

`

dxc2i~x!c2 j~x!ln~x! ~30!

is the universal matrix of constants~in particular, f 0,05gE
12 ln 2'1.96). Using this representation, we transform E
~25b! to the form

2W21D1,2i1W2D2,2i5(
j 50

`

f i , jD2,2j2F lnS H

H1
i

D2z

D1z
D 1gE

12 ln 2GD2,2i . ~31!

We refer to this approximation as the high-field regime in
p band. The last equation in combination with Eq.~25a!
determines the upper critical field along thea direction
within the ‘‘high-field in the p-band’’ regime, at (Tc
2T)/Tc@D1z /D2z . Note that in this approximation the tem
perature dependence exists only in Eq.~25a!. Therefore,
once computed, matrixf i , j allows us to calculate the tem
perature dependence ofHc2

i in a wide temperature range.
ExcludingD1,2i

D1,2i5
W12

W12F ln
1

t
2gS H~4i 11!

tH1
i D G D2,2i , ~32!

we also derive equations containing onlyD2,2i :

F lnS H

H1
i

D2z

D1z
D 1gE12 ln 2

1

2W2F ln
1

t
2gS H~4i 11!

tH1
i D G

W12F ln
1

t
2gS H~4i 11!

tH1
i D GD2,2i2(

j 50

`

f i , jD2,2j

50. ~33!

The upper critical fieldH5Hc2
i is given by the maximum

root of the determinant of this linear system. An approxim
solution can be obtained neglecting coupling to the hig
Landau levels in the self-consistency equations leading to
following equation forHc2

i :
10450
.

e

e
r
e

ln
1

t
2gS Hc2

i

tH1
i D 5

W1lnS Hc2
i

H1
i

D2z

D1z
D

W21 lnS Hc2
i

H1
i

D2z

D1z
D . ~34!

SinceW1!1, the right hand side of Eq.~34! is small. As a
result, in the limit of smallt2 the parallel critical field is
close to the solution of the Maki–de Gennes equation~8!
with the effective parameterH1 replaced byH1

i from Eq.
~26!. A small correction from the weak band can be es
mated at low temperatures

Hc2
i ~0!'Hc2

si ~0!S 12
W1~ ln~D2z /D1z!21.96!

W21 ln~D2z /D1z!21.96D ~35!

with Hc2
si (0)5@exp(2gE)/4#H1

i .
Combining Eqs.~12! and ~35! we obtain an estimate fo

the anisotropy factorgc2(T)5Hc2
i (T)/Hc2

' (T) at low tem-
peratures

gc2~0!'g1S 11
W1ln~D2x /D1x!

W21 ln~D2x /D1x!

2
W1~ ln~D2z /D1z!21.96!

W21 ln~D2z /D1z!21.96D . ~36!

As follows from this equation, the anisotropy ofHc2 at T
50 is very close to the anisotropy of the first band

gc2~0!'g1[AD1x /D1z. ~37!

To estimate the ratioD1x /D1z we use the relationD1x,z

5vF1x,z
2 t1x,z between the diffusion coefficientsD1x,z , Fermi

velocities in the first bandvF1x,z and scattering timest1x,z
alongx andz directions. If we assume the isotropic scatte
ing, t1x't1z , the value ofgc2(0) is determined by the an
isotropy of Fermi velocities in the first bandgc2(0)
'AD1x /D1z'vF1x /vF1z , which for MgB2 gives gc2(0)
'6 ~see Ref. 13!. The assumption of isotropic scattering ca
be violated if a sizable amount ofp-wave scattering exists
i.e.,g1 may depend on type of impurities. On the other ha
the isotropic-scattering valueg1'6 is consistent with the
experimental data on theHc2 anisotropy in MgB2 single
crystals.29–33

C. Ginzburg-Landau region

In the close vicinity ofTc ~exact criterion will be estab-
lished below! one can solve Eq.~14! using the gradient ex-
pansion

Fa'
Da

v
2

1

v2 F2
Dax

2
¹x

2Da1
Daz

2 S 2pHx

F0
D 2

DaG .
Substituting this expansion into the self-consistency con
tions and using relation 2pT(v.0(1/v2)5p/4T, we obtain
3-5
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W1D12W12D252S 2j1x
2 ¹x

2D11j1z
2 S 2pHx

F0
D 2

D1D
1D1ln

1

t
, ~38a!

2W21D11W2D252S 2j2x
2 ¹x

2D21j2z
2 S 2pHx

F0
D 2

D2D
1D2ln

1

t
~38b!

with ja i
2 [pDa i /(8T). NearTc we can look for solution for

D2 in the form

D2'
W21

W2
D11d2 ,

whered2 is a small correction, for which we obtain from E
~38b!

2W12d2'2S 2j1x
2 ¹x

2D11j1z
2 S 2pHx

F0
D 2

D1D1D1ln
1

t
.

Substituting this result into Eq.~38a! we obtain the linear
Ginzburg-Landau~GL! equation forD1

2jx
2¹x

2D11jz
2S 2pHx

F0
D 2

D12D1ln
1

t
50, ~39!

in which the averaged coherence lengthsj i , with i 5x,z, are
defined as

j i5Aj1i
2 1S12j2i

2

11S12
. ~40!

From this equation we immediately obtain the usual GL
sult for the upper critical field atT→Tc

Hc25
F0~12t !

2pjxjz
. ~41!

For comparison with numerical results at lower temperat
we also provideHc2

i in units of H1
i

Hc2
i

H1
i 5

2AD1xD1z~11S12!~12t !

p2A~D1x1S12D2x!~D1z1S12D2z!

'
2

p2A11S12D2z /D1z

~12t ! ~42!

for W1!W2 and D1x;D2x . Due to the strong inequality
D2z@D1z , in the vicinity of Tc the three-dimensional ban
strongly reduces the upper critical field. This reduction lea
to a strong temperature dependence of theHc2 anisotropy
gc2.

Let us compare anisotropy parameters at lowT and near
Tc . According to Eq.~37!, the anisotropy ofHc2 at low
10450
-

e

s

temperatures is close to the anisotropy of thes band
gc2(0)'AD1x /D1z, while the anisotropy ratio nearTc fol-
lows from Eqs.~10! and ~42!

gc2~Tc![gGL5g1A11S12D2x /D1x

11S12D2z /D1z
'

g1

A11S12D2z /D1z

.

~43!
Thus the ratiogc2(0)/gc2(Tc) is roughly given by

gc2~0!

gc2~Tc!
'A11S12D2z /D1z. ~44!

The larger the ratio of transport constantsD1z /D2z , the
stronger the suppression ofgc2(T) with increasing tempera
ture.

According to Eq.~44!, strong temperature dependence
Hc2 anisotropy appears as an interplay of two small para
eters: pairing interaction ratioS12 and the ratio of diffusion
constantsD1z /D2z}v1z

2 t1z /(v2z
2 t2z). This important prop-

erty was first pointed out in Refs. 27,28 within the cle
limit. Therefore the above effect is quite general and does
depend on the details of the theoretical model. The m
reason is the strong reduction of the in-plane upper crit
field by the weakp band in the narrow temperature regio
nearTc .

We obtain now the applicability criterion for the GL ex
pansion. Typical scales of the order parameter variation n
Tc are given by the GL coherence lengthsj i

GL(T)
5j i /A12t, with i 5x,y andj i given by Eq.~40!. The GL
expansion is valid until the GL coherence lengths are lar
than the corresponding microscopic coherence lengths
both bands,j i

GL(T).ja,i . Because of the strong inequalit
j1,z!j2,z , the most sensitive condition is

jz
GL~T!.j2,z ~45!

leading to the following condition for the GL temperatu
range:

Tc2T

Tc
,maxS j1z

2

j2z
2

,S12D . ~46!

Becausej1z!j2z and S12!1, the applicability of the GL
approach is limited to an extremely narrow temperat
range nearTc , i.e., the situation is very different from th
usual single-band superconductors. The comparison of
GL asymptotic with the exact solution is shown in Fig.
where the narrowness of the GL region is demonstrated
the inset.

D. Numerical solution in the whole temperature range

In the whole temperature range, for an arbitrary value
the parametert2, the problem can be solved numerically. Th
solution consists of three steps:~i! the matrixAi , j (z) has to
be found from Eqs.~24! for the series of reduced Matsuba
frequenciesz5t2(s11/2), ~ii ! the matrixUi , j has to be com-
puted by summation over Matsubara indicess ~27!, and~iii !
the upper critical field has to be found as the maximum r
3-6
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of the determinant of the linear system represented by E
~25a! and~25b!. Due to the fast decrease of the nondiago
matrix elementsUi , j for u i 2 j u@1, sufficient accuracy is
achieved for dimensions of a matrix of less than 30. T
result of calculation of the parallel upper critical field
shown in Fig. 1 where the ratioD2z /D1z5100 relevant to
MgB2 was used. Note that when plotted in reduced units,
deviations of both ratiosHc2

i /H1
i andHc2

' /H1
' from the uni-

versal single band curve are small~except from the region
near Tc , in the GL region!, in accordance with the abov
discussion. However, one should keep in mind
large difference in magnitudes of the characteristic sca
H1

i andH1
' .

Numerically calculated temperature dependence of the
isotropy factor for several ratiosD2z /D1z is shown in Fig. 2.
The anisotropy ratio drops with the increase of temperat
in accordance with the estimate~44!. This result agrees
qualitatively with the calculations within the clean lim
model in Refs. 27,28 and with recent measurements
temperature-dependent anisotropy in MgB2.29–33 In experi-
ment the change in anisotropy typically is distributed ov
wider temperature range than it is suggested by the theo

V. TILTED FIELDS

The upper critical field for magnetic field tilted at angleu
with respect to thez axis in the (zy) plane is determined by

FIG. 1. Temperature dependence of the upper critical field in
a direction normalized toH1

i defined in Eq.~26!. Single-band curve
is normalized to the corresponding scaleH1. Solid circles show the
dependence obtained within the ‘‘high-field in thep-band’’ ap-
proximation @Eqs. ~29! and ~31!#. Inset: comparison between th
exact solution and the GL asymptotics Eq.~42!.

FIG. 2. Temperature dependence of the anisotropy of the u
critical field for several ratiosD2z /D1z .
10450
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the coupled linear equations for the Green’s functionsFa in
two bands

vFa2
Dax

2
¹x

2Fa1
Da~u!

2 S 2pHx

F0
D 2

Fa5Da ~47!

with

Da~u!5D axcos2u1D azsin2u ~48!

and the self-consistency conditions~2!.
Therefore theHc2 problem of the upper critical field in

tilted field reduces to the in-planeHc2 problem by substitu-
tion Daz→Da(u). It is convenient to introduce the angula
dependent anisotropy parameters

ga~u![A Dax

Da~u!
5

ga

Aga
2cos2u1sin2u

. ~49!

Such defined anisotropy parameters vary from 1 toga when
angle varies from 0 top/2.

Following the route of the previous section, we again u
expansion with respect to the Landau levels of the stro
band, defined by Eq.~17! with D1z→D1(u). TheF function
of the strong band is given by

F1,n5
D1,n

v1«n~u!

with the eigenvalue

«n~u!52pT
H

tH1~u!
~2n11!,

H1~u!5
2TcF0

AD1~u!D1x

.

The matrix elements for the harmonic oscillator operator
the weak band are given by

enn5
pH

F0
D2~u!g1~u!S n1

1

2D F11S g2~u!

g1~u! D
2G

5
2pT

t2~u!
@11ag~u!#S n1

1

2D
en,n2252

pH

F0

An~n21!

2
D2~u!g1~u!F12S g2~u!

g1~u! D
2G

52
2pT

t2~u!
@12ag~u!#

An~n21!

2

with

t2~u!5
2TF0

HD2~u!g1~u!
5

2TF0Acos2u1g1
22sin2u

HD2x~cos2u1g2
22sin2u!

,

ag~u!5S g2~u!

g1~u! D
2

5
11g1

22tan2u

11g2
22tan2u

.

e

er
3-7
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Note that at arbitrary angle we cannot use inequa
g2(u)/g1(u)!1 any more. The system of equations for t
reduced F function at even Landau levelsF̃2,n
5@2pT/t2(u)#F2,2i at arbitrary tilt angle is given by

2~12ag!Ai ~ i 21/2!F̃2,i 211Fz1~11ag!S 2i 1
1

2D G F̃2,i

2~12ag!A~ i 11/2!~ i 11!F̃2,i 115D2,2i ~50!

with z5t2(u)(s11/2).
At small tilt angles,u!1, one can solve Eq.~50! using

perturbation theory with respect tou2. The quadratic angula
correction can be obtained neglecting coupling to the hig
Landau level. This leads to equation similar to Eq.~6! with
replacements

H1→H1~u!5
2TcF0

AD1xD1~u!
,

H2→H2~u!5
4TcF0

D2~u!g1~u!~11ag!
.

At small angles we obtain quadratic inu corrections to typi-
cal fields

H1~u!'H1S 11~12g1
22!

u2

2 D ,

H2~u!'H2S 11~12g2
22!

u2

2 D .

At low temperature one can derive an exact formula
small-angle correction

Hc2~u!2Hc2~0!

Hc2~0!
'

u2

2 F12
1

2 S g1
221g2

22

2
~g2

222g1
22!~W22W12 ln r x!

A~W21W12 ln r x!
214W1ln r x

D G
~51!

with r x[D1x /D2x . In the case of small correction from th
weak band 4W1ln rx!(W22ln rx)

2, we obtain a simpler for-
mula for u!1

Hc2~u!2Hc2~0!

Hc2~0!
'

u2

2 S 12g1
221

W2W1~g1
222g2

22!

~W22 ln r x!
2 D .

~52!

For parameters of MgB2 this formula gives an estimate a
most identical to the exact result.

At large tilt angles, cosu!1, inequalityg2(u)!g1(u) is
restored and we can utilize the approximations used for
case of in-plane field. In particular, at low temperatures
approximate angular dependence is given by a formula s
lar to Eq.~35!:
10450
y

r

r

e
e
i-

Hc2~u!'
Hc2

(1)~0!

Acos2u1g1
22sin2u

3S 12

W1S ln
D2z

D 1xcot2u1D1z

21.96D
W21 ln

D2z

D 1xcot2u1D1z

21.96
D .

~53!

In the whole angular range we calculated the upper c
cal field numerically following the procedure outlined in Se
IV D. As input parameters we have used the valuesg1
56.325, g150.816 which follow from the electronic band
structure calculations in MgB2. We have also used the rela
tion D1x50.2D2x—the reason for this choice was discuss
in Ref. 22. The examples of the calculated angular dep
dence forT/Tc50.1 and 0.95 are shown in Fig. 3. We als
show fits to a simple effective-mass law, routinely used
describe angular dependence ofHc2 in anisotropic supercon
ductorsHc2(u)5Hc2,c /Acos2u1gc2

22sin2u. Due to the contri-
bution from thep band, one can see significant deviatio
from this law at high temperature. To enhance these de
tions we plot in Fig. 4 the angular dependence of the co
bination A(u)5@Hc2,z(u)/Hc2,c#

21@Hc2,x(u)/Hc2,a#2 for
several temperatures@for the effective-mass lawA(u)51 for
all u]. We find thatA(u),1 always and the maximum de

FIG. 3. Examples of angular dependence of the upper crit
field at low and high temperatures. Fits to the effective-mass dep
dence are also shown.

FIG. 4. Plots of the parameterA(u)5@Hc2,z(u)/Hc2,c#
2

1@Hc2,x(u)/Hc2,a#2 vs sin2u at different temperatures revealing d
viations from the simple effective-mass law. Left panel: tempe
tures not very close toTc . Right panel: temperature region nearTc .
3-8



b

e
aw
r

a

am
it

op
et
on
o

w-
a

e-

o-
qu
p

ib

ls

,

di

al
a

nl
om
tu

u-
ver,
ason
air-
he

an-

nted
ce

-

of

le

n in
k-

hat
is

the
c
l-

of
-
s of

ten-
me

n,
,
by
1-

g

le
f

ss
te
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viation from unity is achieved aroundu;74°. At high tem-
peratures one can derive a very simple formula forA(u) at
small anglesu!1, A(u)'12(1/gGL

2 21/gc2
2 )u2. Quantita-

tively, the deviations from the effective-mass law can
characterized by the parameterdAmax5maxuu12A(u)u. Fig-
ure 5 shows the temperature dependence of this param
At low temperatures deviations from the effective-mass l
are at the level of several percents. These deviations prog
sively grow with the temperature reaching;19% at T/Tc
50.92 and then rapidly decrease when the temperature
proaches the narrow GL region nearTc . As the deviations
from the effective-mass dependence have exactly the s
origin as the temperature dependence of the anisotropy,
interesting to correlate these deviations with the anisotr
change. The inset in the Fig. 5 shows plot of the param
dAmax vs theHc2 anisotropy. One can see that the distorti
of the angular dependence is maximum when the anisotr
is approximately at the midpoint between the lo
temperature and GL limits. Experimentally, it was found th
the angular dependence ofHc2 in MgB2 indeed deviates
from the effective mass law44,45 and the shape of these d
viations qualitatively agrees with our calculations.

VI. CONCLUSIONS

We have calculated the upper critical field in a dirty tw
band superconductor within the quasiclassical Usadel e
tions, bearing in mind the regime of the very high anisotro
in the quasi-2D band relevant for MgB2. Following Ref. 14,
we have assumed that the interband scattering is neglig
even in the dirty limit in both bands. Most of the MgB2
samples are in the dirty limit, except for single crysta
where the dirty limit conditions are fulfilled in thep band
but not fulfilled in thes band.42 Still, as argued in Ref. 22
our results should be qualitatively applicable to MgB2 single
crystals, if one considers the coherence lengthj1 as a phe-
nomenological parameter instead of expressing it via the
fusion constantD1.

We have considered the cases when the field is par
and perpendicular to the basal plane separately. We h
found that at low temperatures both critical fields are mai
determined by the strong band and only weakly deviate fr
the universal Maki–de Gennes result. The low-tempera

FIG. 5. Temperature dependence of the parameterdAmax

5maxuu12A(u)u characterizing deviations from the effective-ma
dependence ofHc2. Inset shows the dependence of this parame
on theHc2 anisotropy.
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anisotropy is mainly determined by the anisotropy of diff
sion constants in a quasi-two-dimensional band. Howe
the anisotropy is suppressed at high temperatures. The re
is that there are two important parameters, anisotropy of p
ing interaction and of diffusion constants, which enter t
expression for the parallelHc2 in a different way at high and
low temperatures. This property can be expressed as the
isotropy of coherence lengthjab /jc which decreases with
increasing temperature. The same effect was earlier poi
out in Refs. 27,28 within the clean limit and is in accordan
with the experimental data in MgB2. Note that the anisotropy
of the penetration depthlc /lab increases with increasing
temperature,25,26 which is another manifestation of the two
band model.

We have also studied quantitatively the dependence
Hc2 on the angleu between thec axis and the magnetic field
direction. We have derived approximate expressions forHc2
for small and large tilt angles of magnetic field. In the who
angular range the dependenceHc2(u) has been calculated
numerically using parameters typical for MgB2. This depen-
dence deviates from the effective-mass dependence eve
vicinity of transition temperature demonstrating the brea
down of anisotropic GL theory. Further, we have shown t
the temperature range of applicability of the GL theory
extremely narrow in the considered two-band case.

An important issue is strong coupling corrections toHc2.
In this paper the weak coupling approach was used. On
other hand, it is known from work on isotropi
superconductors43 that strong coupling corrections renorma
ize the absolute value ofHc2 by the factor (11l)a, wherel
is the coupling constant anda.2. Since electron-phonon
coupling in MgB2 is relatively strong~according to Ref. 12,
l11.1), these corrections are important for calculation
absolute values ofHc2. However, we do not expect qualita
tive changes in the temperature and angle dependencie
the anisotropy ratio calculated in the present paper. Ex
sion of our results to the strong coupling Eliashberg regi
is an interesting subject for future work.
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APPENDIX: LOCAL APPROXIMATION FOR THE p
BAND

Let us consider equation for theF function in the weakp
band

vF21
D2z

2 S 2pHx

F0
D 2

F22
D2x

2
¹x

2F25D2 . ~A1!

The typical scale ofD2(x) variation is imposed by the stron
s band. This scale is given byx15Ag1F0/2pH and, due to
inequality g1@g2, it is much larger than the length sca
x25Ag2F0/2pH of the oscillator operator in the left side o

r

3-9
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the Eq.~A1!. For relevantv ’s the typical length scale ofF2
variation is much larger thanx2. This allows us to neglec
the gradient term in Eq.~A1!. This approximation is equiva
lent to the approximation for the matrix elements used
Eqs.~20!. Then thep-bandF function is given by

F25
D2

v1
D2z

2 S 2pHx

F0
D 2 . ~A2!

Substituting this expression into the second self consiste
equation, we represent it in the form

2W21D11W2D25S ln
1

t
2gF D2z

4pT S 2pHx

F0
D 2G DD2 .

~A3!

It has to be solved together with equations forF1 and the
first self-consistency equation. Using expansion with resp
to eigenfunctions of thes bandCn(x), this equation reduce
to the form of linear equation~25b!, in which the matrixUi , j
is given by the matrix elements

Ui , j52E dxC2i~x!C2 j~x!gF D2z

4pT S 2pHx

F0
D 2G .
d

L.

.E

e

.
T

ys

ys

K.
on

,

s
s.

10450
n

cy

ct

Introducing the dimensionless oscillator wave functio
cn( x̃), Cn(x)5cn(x/x1)/Ax1, we present these matrix ele
ments in the dimensionless form

Ui , j~ t2!5E
2`

`

dx̃c2i~ x̃!c2 j~ x̃!g@ x̃2/t2#,

where, again 1/t2[(D2z /D1z)(H/tH1). In particular,c0( x̃)
5p21/4exp(2x̃2/2). In the ‘‘high-field in p-band’’ regime,
t2!1, one can use asymptoticsg@ x̃2/t2#'2 ln(x̃)2ln t21gE
12 ln 2 and obtain

Ui , j~ t2!5 f i , j1~ ln t22gE22 ln 2!dn,m

f i , j524E
0

`

dx̃c2i~ x̃!c2 j~ x̃!ln~ x̃!.

In particular,

f 0,052
4

Ap
E dx̃ exp~2 x̃2!ln~ x̃!5gE12 ln 2'1.9635.
J.
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.
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