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Exotic vortex states in layered superconductors created
by tilted magnetic field: Josephson vortices, solitons,

vortex chains. . .
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Abstract

In very anisotropic layered superconductors tilted magnetic field generates two interpenetrating vortex sublattices.

This set of crossing lattices contains a sublattice of Josephson vortices (JVs) and a sublattice of pancake vortex (PV)

stacks. The PV sublattice modifies structure of an isolated JV. The JV phase field is composed of the regular and vortex

phases. The contribution from the vortex phase smoothly takes over with increase of the magnetic field. The core

structure experiences qualitative evolution with anisotropy decrease. At large anisotropies JV weakly distorts PV crystal

and the JV core contains many PV rows. At smaller anisotropies the JV core shrinks to one PV row and PV stacks in

this central row form a soliton-like structure. At very small c-axis field (K 1 G) the PV stacks form chains located at

JVs. At certain field the crossing-lattices chains transform into the tilted-vortices chains. We present a simple criterion

for this transition.
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1. Introduction

Vortex phase diagram of layered superconductors in

tilted magnetic field is very rich and not completely

understood. At very high anisotropies, c, higher than the

ratio of the London penetration depth k to the interlayer

spacing s, the ground state configuration in tilted field is

given by crossing vortex lattices of the Josephson vor-

tices (JVs) and stacks of pancake vortices (PVs) [2,3].

This situation is realized in the most anisotropic high-Tc

compound Bi2Sr2CaCu2Ox (BSCCO).

In this proceeding we consider two very different re-

gimes of the crossing vortex lattices. In the first part we

study the structure of an isolated JV inside the dense PV

lattice. We consider influence of the PV crystal on the JV

core structure and distribution JV magnetic field (see

also [9]). In the second part we consider the regime of a
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very small concentration of PV stacks where they form a

dilute array of chains located at JVs. We study the phase

transition between the crossing-lattices chain and tilted-

vortices chain, which was suggested in Ref. [6] to inter-

pret experimental observations of Ref. [4].
2. Energy of vortex state

Structure of the vortex state in the layered super-

conductor is completely described by the PV coordinates

in the layers Rn;i, the regular phase /rnðrÞ and vector-

potential ArðrÞ. The total phase and vector-potential can

be split into the vortex and regular contributions,

/n ¼ /vn þ /rn and A ¼ Av þ Ar. The vortex contribu-

tions minimize the energy for fixed PV positions for zero

Josephson energy and give magnetic interaction energy

for the PVs. In general, the regular contributions may

include phases and vector potentials of the JVs. The total

energy, F ½/rn;Ar;Rn;i�, naturally splits into the regular
ed.
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part Fr½/rn;Ar�, the PV magnetic interactions energy

FM½Rn;i�, and the Josephson energy FJ½/rn;Ar;Rn;i�, which

couples the regular and vortex degrees of freedom,

F ¼ Fr þ FM þ FJ ð1Þ

with

Fr ¼
X
n

Z
d2r

J
2
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�
� 2p
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þ
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where J 
 sU2
0½pð4pkÞ2� 
 se0=p is the phase stiffness,

EJ 
 U2
0=½spð4pckÞ2� is the Josephson coupling energy,

and

UMðR; nÞ ¼ J
2p

Z
exp½ikR þ iqnÞ�dkdq

k2½1 þ k�2ðk2 þ 2ð1 � cos qÞ=s2Þ�1�

is the magnetic interaction between PVs [1].
3. Josephson vortices and solitons inside dense pancake

lattice (see also [9])

3.1. High anisotropy: effective phase stiffness

In this section we consider the case of very high

anisotropy c � k=s when one can conveniently describe

the JV structure in terms of the effective phase stiffness

[3]. The approach is based on observation that a smooth

transverse lattice deformations unðrÞ produce large-scale

phase variations /vnðrÞ with r/vn ¼ 2pnvez � un. At

Bz > U0=ðcsÞ2 the transverse elastic energy, Fv-t, can be

rewritten in terms of /vnðrÞ as

Fv-t ¼
Z

dk

ð2pÞ3
JvðBz; kÞ

2s
k2
?j/vðkÞj

2
; ð5Þ

where the vortex phase stiffness JvðBz; kÞ is related to the

tilt an shear stiffness of the lattice [3]. In the range of

wave vectors relevant for JV one can neglect the shear

term and derive

JvðBzÞ � J
Bk

Bz
; Bk 


U0

4pk2
ln
rcut

rw
ð6Þ

with rw � u1ð0Þ and rcut � minða; kÞ. The phase stiffness

energy (5) has to be supplemented by the Josephson

energy. In the core region we can neglect the vector-

potentials and write the total energy in terms of /rn and

/vn as
F ¼
X
n

Z
d2r

J
2
ðr/rnÞ

2

�
þ Jv

2
ðr/vnÞ

2

þ EJ ð1 � cosð/nþ1 � /nÞÞ
�
: ð7Þ

Excluding the regular phase, /rn ¼ /n � /vn, and vari-

ating the energy with respect to /vn at fixed /n, we

obtain /vn ¼ ½J=ðJv þ JÞ�/n ¼ ½Bz=ðBz þ BkÞ�/n. Substi-

tuting this relation in Eq. (7), we obtain the energy in

terms of the total phase

F ¼
X
n

Z
d2r

Jeff

2
ðr/nÞ

2

�
þ EJ ð1 � cosð/nþ1 � /nÞÞ

�
;

ð8Þ

which coincides with the phase energy at Bz ¼ 0, except

that the phase stiffness J is replaced by the effective

phase stiffness Jeff ,

J�1
eff ¼ J�1 þ J�1

v or Jeff ¼ J=ð1 þ Bz=BkÞ: ð9Þ

Note that the smallest stiffness from J and Jv dominates in

Jeff . For the Josephson vortex located between the layers 0

and 1 the phase satisfies the conditions /1 � /0 ! 0, for

y ! 1 and ! 2p, for y ! �1. Far away from the core

the phase has the usual form for the vortex in anisotropic

superconductor /nðyÞ � arctanðkJðn� 1=2Þ=yÞ, where

the effective Josephson length

kJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jeff=EJ

p
¼ kJ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Bz=Bk

p
ð10Þ

determines the core size, and kJ0 ¼ cs. Therefore, at low

temperatures the JV core shrinks in the presence of PVs

due to softening of the in-plane phase deformations. The

JV energy per unit length, EJV, is given by EJV ¼
p
ffiffiffiffiffiffiffiffiffiffiffi
EJJeff

p
lnðL=sÞ, where L is the cutoff length, which is

determined by screening at large distances. At Bz > Bk

the maximum PV displacement can be estimated as

umax=a � 0:5k=kJ0, which shows that the linear elasticity

is applicable if cJ 3k=s. At Bz > Bk a number of PV

rows within the JV core Nrows � kJ0=2k is almost field

independent.

The above description is valid only at c � k=s and at

low temperatures, when one can neglect fluctuation sup-

pression of the Josephson energy. Thermal motion of the

PVs at finite temperatures induces the fluctuating phase
~/n;nþ1 and suppresses the effective Josephson energy,

EJ ! CEJ where C 
 hcos ~/n;nþ1i. This leads to reduction

of the JV energy and thermal expansion of its core.

3.2. Moderate anisotropy: crossover between Josephson

cores and soliton-like cores

The ‘‘effective phase stiffness’’ approximation is only

valid if c is significantly larger than k=s. In this section

we extend our analysis to the region c � k=s. We con-

sider the JV structure at low temperatures and not very



c

Fig. 1. Visualization of JV inside the PV lattice at Bz ¼ U0=

ðcsÞ2. Left column represents cosð/1 � /0Þ. Right column

shows PV arrangements in the central row. Upper (lower)

pictures represent the ratio k=cs ¼ 0:3 (0.5) correspondingly.
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small c-axis field, Bz > U0=ðcsÞ2. The JV core structure is

completely determined by the displacements of PV rows

un;i and phase distribution. We will operate with the

phase perturbation /nðrÞ with respect to phase distri-

bution of the ideal PV crystal. This phase depends on

both in-plane coordinates, i.e., the problem is three-

dimensional. We split this phase into the contribution,

averaged over the JV direction (x-axis), /nðyÞ, and the

oscillating in the x direction contribution, ~/nðx; yÞ.
Pancake displacements induce jumps of the average

phase at the coordinates of the vortex rows Yi,
/nðYi þ 0Þ � /nðYi � 0Þ ¼ 2pun;i=a, where a is the PV

lattice spacing. The oscillating phase induced by the row

displacements becomes negligible already at the neigh-

boring row. This allows us to separate the local contri-

bution to the Josephson energy, EJloc, coming from
~/nðx; yÞ and reduce three-dimensional problem to the

two-dimensional problem of finding the average phase

and row displacements. The energy per unit length in

terms of the regular phase, /rnðyÞ, and the row dis-

placements, un;i, can be written as

EJ ¼
X
n

Z
dy

J
2

d/rn

dy

� �2
"

þ EJ ð1 � cosð/nþ1 � /nÞÞ
#

þ 1

2

X
n;m;i;j

UMrðun;i � um;j; Yi;j; n� mÞ

þ
X
n;i

EJlocðunþ1;i � un;i;/nþ1;i � /n;iÞ; ð11Þ

where

(i) /nðyÞ 
 /rnðyÞ þ /vnðy; un;iÞ is the total phase, the

vortex phase is composed of jumps at the row

positions Yi, /vnðy; un;iÞ ¼ �ð2p=aÞ
P

i un;iHðYi � yÞ,
where HðyÞ is the step-function.

(ii) UMrðxn;i � xm;j; Yi;j; n� mÞ is the magnetic interac-

tion between the vortex rows separated by distance

Yi;j ¼ Yi � Yj ¼ bði� jÞ, UMrðu;y;nÞ 
 1
a

P
m½UMðx0þ

u� ma; y; nÞ�UMðx0 � ma; y; nÞ� with x0 ¼ 0 or a=2.

(iii) EJlocðunþ1;i � un;i;/nþ1;i � /n;iÞ is the local Josephson

energy due to the oscillating component of the

phase difference, for u � a

EJlocðu;/Þ � ðp=2ÞEJa cos /ðu=aÞ2 lnð0:39a=uÞ:

We numerically minimized the energy with respect to

row displacements and regular phase for different ratios

a ¼ k=cs and different Bz. We find that at small ratios,

a < 0:3, the core structure is consistent with the effective

phase approach, i.e., PV displacements are small and the

JV core includes many PV rows. With increase of this

ratio, within the range a ¼ 0:35–0:5, the core structure

experiences smooth yet qualitative evolution (see Fig. 1).

For a ¼ 0:5 configuration of the PV rows in the central

stack is very similar to the classical soliton (‘‘kink’’)

of the stationary sine-Gordon equation: the stacks
smoothly transfer between the two ideal lattice position

in the region of the core. One can estimate that the size

of the soliton in z direction is given by k=c. Fig. 1 also

shows the distribution of cosð/1 � /0Þ. As one can see,

at a ¼ 0:3 there are extended regions of large phase

mismatch (dark regions), while for a ¼ 0:5 these regions

are almost eliminated by large PV displacements in the

core, so that the core region is essentially shrinked to a

single row.

3.3. Large-scale behavior. Screening lengths

In this section we consider the JV structure at large

distances from the core, n � 1, y � kJ. At large distance

screening of supercurrents becomes important and one

can not neglect any more the vector potential. At these

scales the phase changes slowly from layer to layer so

that one can expand the Josephson energy in Eq. (4)

with respect to phase difference and use continuous

approximation. This reduces the Lawrence–Doniach

model defined by Eqs. (1)–(4) to the anisotropic London

model (see Ref. [5]). As this model is linear, it can be

solved exactly by the Fourier transform, yielding the

following results for the JV energy and magnetic field

EJV ¼ J
2s

Z
d2k

k�2 þ c2k2
y þ k2

z ð1 þ wðkÞÞ
; ð12Þ

BxðkÞ ¼
U0

1 þ k2
ck2

y þ k2k2
z ð1 þ wðkÞÞ

; ð13Þ

where wðkÞ ¼ 2h=½k2k2
y =2 þ lnð1 þ k2

z r
2
cutÞ� is the PV

renormalization factor and h 
 4pnvk
2. The integration

has to be cut at kz � p=s. In the limit h � 1 we estimate

the JV energy and the magnetic field in the core as

EJV � 2pJ

3cs
ffiffiffi
h

p ln
0:2a
rw

� �3=2

;

Bxð0; 0Þ �
U0

3pkk
ffiffiffi
h

p ln
a
rw

� �3=2
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The magnetic field decays at the scale � a=4:5 in the z
direction and at the scale ca2=20k in the y direction. The

magnetic flux concentrated at this region is estimated as

U � U0=ð1 þ 2:8h2Þ. The residual flux, U0 � U, is dis-

tributed over the PV lattice at much larger distances.
5.6

6.4

6 7 8 9 10
N

Fig. 2. Boundary separating the crossing-lattices chains and

tilted-vortices chains for k=cs ¼ 0:4.
4. Transition between crossing-lattices chains and tilted

vortices chains at small fields

In this section we consider vortex states in very small

c-axis field of the order of several gauss. It is known that

at such small fields the PV stacks penetrate along the JVs

forming isolated chains. Recently it was found that the

PV stacks formed only when c-axis field exceed certain

threshold value [4]. Later this observation have been

interpreted as the first-order phase transition between

the tilted-vortices chains at very small fields and the

crossing-lattices chains at higher field [6]. Here we derive

a simple analytical criterion for this transition.

We compare energies of two states: (i) the crossing-

lattices chain with the spacing c ¼ Ns � k between JVs

and the spacing aJ k between PV stacks and (ii) tilted

vortex chain with the tilt angle u, tanu ¼ a=c � c. The

approximate energy of the dilute crossing-lattices chain

per unit area, ECL, is given by

ECL � Es
PS þ EJ þ

e0

cc
ðlnN � 0:41Þ � ��

ac

The first term is the energy of straight PV stacks,

Es
PS � ðe0=aÞðlnðk=nÞ þ 0:5Þ, the second term is the long-

range Josephson energy, EJ ¼ pe0k=ðcc2Þ, the third term

is the local energy of the JVs, and the last term is cor-

rection from the crossing energy [3]. We neglected small

contribution coming from the PV stack interactions.

The energy of the tilted vortex chain at tan / � c we

evaluate as

ETV � Es
PS þEJ þ

e0

a
pk
a

 
þ ln

a
k
� 1:72þ a2ðlnN � 0:95Þ

2ðNcsÞ2

!
:

Comparing the above energies, we arrive at the transi-

tion criterion between the two states. Due to attractive

coupling between the PV stacks [7], they should form

clusters at small densities. fHowever this does not

influence much the location of the transition, because

interaction between the stacks plays minor role. The

boundary line is plotted in Fig. 2 for k=cs ¼ 0:4. Elab-
orated numerical analysis shows that (i) at small fields a

simple crossing configuration smoothly transfers into

the strongly deformed intermediate configuration lead-

ing to significant downshift of the phase boundary

shown in Fig. 2 and (ii) the first order transition tran-

forms to crossover with increase of field. At fixed fields

the transition can also be driven by the temperature, due

to the T-dependence of k, and the high-temperature

phase corresponds to the tilted chains. This provides

possible interpretation of disappearance of the field

modulation in the chains with temperature increase

observed in Ref. [8].
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