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Abstract

We consider magnetic oscillations of the critical current in stacks of intrinsic Josephson junctions. Depending on junction lateral size
and magnetic field, oscillations may have either the period of half a flux quantum per junction (wide-stack regime) or one flux quantum
per junction (narrow-stack regime). For junctions with lateral sizes of the order of several Josephson lengths, the stack crosses over from
the wide-stack regime to the narrow-stack regime with increasing magnetic field. This crossover occurs via suppression of the critical-
current peaks at the integer-flux-quanta points and enhancement of the critical-current peaks at the half-integer-flux-quanta points.
In the narrow-stack regime the lattice structure periodically transforms between rectangular and triangular configurations. The latter
configurations is realized only in narrow regions near magnetic-field values corresponding to an integer number of flux quanta per
junction.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Intrinsic Josephson effect in layered high-temperature
superconductors, such as Bi2Sr2CaCu2Ox (BSCCO), has
been the subject of intense experimental and theoretical
research in the past fifteen years, see reviews [1,2]. In a
large-size superconductor the magnetic field applied along
the layers generates a triangular lattice of Josephson vorti-
ces. When the magnetic field exceeds the crossover field
Bcr = U0/(2pcs2) (�0.5 T for BSCCO) the Josephson vorti-
ces homogeneously fill all layers [3]. Here c is the anisot-
ropy factor and s is the interlayer periodicity. Strong
coupling between the vortex arrays in neighboring layers
mediated by the in-plane supercurrents [4] determines the
static and dynamic properties of the lattice. When an exter-
nal transport current flowing across the layers exceeds the
critical current, the Josephson vortex lattice starts to move.
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In homogeneous junctions the critical current is determined
by interaction with the boundaries. For a single small
Josephson junction without inhomogeneities the field
dependence of the critical current is given by the celebrated
Fraunhofer dependence, Jc(U) = JJjsin(pU/U0)j/(pU/U0),
with U being the magnetic flux through the junction and
JJ is the Josephson current. In other cases the critical cur-
rent has more complicated field dependence.

The behavior of the critical current for the dense
Josephson-vortex lattice in a homogeneous wide stack
has been considered in Ref. [5]. The boundary induces
an alternating deformation of the lattice decaying inside
the superconductor at the typical length 2

ffiffiffi
2
p

LB, which is
larger than the Josephson length, kJ = cs, and increases
proportional to the magnetic field, LB = kJB/Bcr. The stack
is in the large-size regime if its lateral width L is larger
than this LB. In this situation the surface deformation
and the total current flowing along the surface is uniquely
determined by the lattice displacement. The surface current
has oscillating dependence on the lattice displacement and,
due to the triangular-lattice ground state, the period of this
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dependence is half the lattice spacing. The total current
flowing through the stack is given by the sum of two inde-
pendent surface currents flowing at the sample edges. The
magnetic field determines the magnitude of the maximum
surface current and sets the phase shift between the oscil-
lating dependences of the two surface currents on the lat-
tice position. Due to the half-lattice-spacing periodicity of
the surface current, a full-period change of this phase shift
corresponds to the change of the magnetic flux through
one junction, U, equal to the half flux quantum, U0/2.
As a consequence, the maximum current through the stack
has field dependence similar to the Fraunhofer depen-
dence: it has strong oscillations and overall 1/B depen-
dence. However, the period of these oscillations is two
times smaller: it corresponds to adding one flux quantum

per two junctions and the critical current has local maxima
at U = jU0/2. Oscillations of the flux-flow voltage caused
by this effect have been observed by Ooi et al. [6], see also
numerical simulations [7].

In this proceeding we extend our consideration to the
regime when the junction size L becomes comparable with
the size LB and the system crosses over from the wide-stack
to narrow-stack regime. As the length scale LB increases
with the magnetic field, it also sets the field scale
BL = BcrL/kJ, at which LB becomes of the order of L.
[U0/2]-periodicity of the critical-current oscillations holds
until the surface deformations at the opposite edges are
independent. Interactions between the surface deforma-
tions break the U0/2-periodicity: they lead to enhancement
of the critical current at points U = (k + 1/2)U0 and to sup-
pression of the critical current at points U = kU0. In the
region L � LB the lattice structure is determined by a com-
petition between the two energies: the interaction with
boundaries and the bulk shearing interaction between the
Josephson-vortex planar arrays in neighboring layers.
The boundary interactions favor the aligned rectangular
arrangement of the Josephson vortices while the local
shearing interaction favors the triangular lattice. The
boundary interactions decay slower with increasing field
than the shearing interactions and become dominating at
large fields. On the other hand, the boundary interaction
energy has oscillating field dependence and vanishes at
the points U = kU0. At these points the shearing interaction
is relevant even at B > BL.

In the region L� LB the rectangular arrangement of
vortices is realized in most part of the phase space and
the field dependence of the critical current approaches the
classical Fraunhofer dependence. Two important devia-
tions persist at all fields and sizes: (i) Near the points
U = kU0 the phase transition to the triangular lattice
always takes place. The critical current at these points
never drops to zero and actually always has a small local
maximum. (ii) Away from the points U = kU0 the critical
current is reached at the instability point of the rectangular
vortex lattice and it is always somewhat smaller than the
‘‘Fraunhofer’’ value Ic0jsin(pU/U0)j/jpU/U0j.
2. Smooth alternating lattice deformation for Josephson-

junction stack at high magnetic field

We consider a Josephson-junction stack consisting of N

layers with lateral size L in a magnetic field B applied along
the layers. Below we briefly outline derivations and sum-
marize the main results. Details will be published else-
where. At high magnetic fields the junction properties are
described by the reduced energy per one junction and per
unit length in the field direction which we represent in
the following form:

E ¼ 1

N

X
n

Z L

0

du
1

2

d/n

du

� �2
"

� cosð/nþ1 � /n � huþ aþ pnÞ
#
; ð1Þ

where /n are the in-plane phases and h � B/Bcr is the re-
duced magnetic field. We use the Josephson length kJ as
the unit of length and EJkJ as the unit of energy per unit
length, where EJ is the Josephson coupling energy per unit
area. The parameter a describes lattice displacement. The
oscillating behavior is determined by the reduced parame-
ter hL which is directly related to the total magnetic flux
through one junction U = BLs, as hL = 2pU/U0. The ratio
L/h determines crossover between the wide-stack and nar-
row-stack regimes [5]. In the wide-stack regime L� h away
from the boundaries the phases /n are small and rapidly
oscillate in space.

We will assume the alternating phase distribution in the
form /n = (�1)n/ and split the alternating phase into the
smooth and rapidly-oscillating components [5], /ðuÞ ¼
vðuÞ þ e/ðuÞ, where we assume je/j, jdv/duj � 1. Averaging
with respect to rapid oscillations, e/, leads to the sine-Gor-
don equation for the smooth phase [5]

d2v
du2
� 2

h2
sinð4vÞ ¼ 0. ð2Þ

Using the boundary conditions d/=du ¼ dv=duþ
de/=du ¼ 0 for u = 0, L and computing the derivatives of
the oscillating phase at the edges, we also derive the bound-
ary conditions for the smooth phase.

dv
du
ð0Þ ¼ 2

h
cosð2v0Þ cosðaÞ; ð3Þ

dv
du
ðLÞ ¼ 2

h
cosð2vLÞ cosð�hLþ aÞ; ð4Þ

with v0 � v(0) and vL � v(L). The deformation field v(u)
determines static properties of the lattice. In particular,
the energy in terms of the smooth phase v(u) is given by

Eðh; L; aÞ � 1

h
½sinð2v0Þ cosðaÞ � sinð2vLÞ cosð�hLþ aÞ�
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The total Josephson current flowing through the stack is
proportional to dEJ=da and is given by

Jðh; L; aÞ ¼ 1

h
½� sinð2v0Þ sin aþ sinð2vLÞ sinð�hLþ aÞ�.

ð6Þ
The unit of current here is jJkJw where jJ is the maximum
Josephson-current density and w is the junction size in
the field direction.

A general solution of the sine-Gordon equation (2) can
be found in terms of elliptic integrals,Z v

v0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=m� cos2ð2vÞ

p ¼ 	
ffiffiffi
2
p

u=h. ð7Þ

The shape of the solution is determined by the elliptic-inte-
gral parameter m. Using the equation for v(u) the boundary
conditions can be transformed to the following form:

cosð2v0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=m

1þ 2 cos2ðaÞ

s
; ð8Þ

cosð2vLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=m

1þ 2 cos2ðhL� aÞ

s
. ð9Þ

Depending on parameters a and hL, solutions may be
either monotonic [cos a cos(hL � a) > 0] or nonmonotonic
[cos a cos(hL � a) < 0]. For these two cases one can derive
from Eq. (7) the following equation connecting m with v0

and vL:ffiffiffiffi
m
p
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for the monotonic solution andffiffiffiffi
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for the nonmonotonic solution, where F ðu;mÞ ¼R u
0

dxð1� m sin2 xÞ�1=2 is the incomplete elliptic integral of
the first kind [9]. Eqs. (8)–(10) [or (11)] have to be solved
for given L, h, and a to find the three unknown constants
v0, vL, and m, which completely determine the solution
and lattice properties. Ground states are realized at
symmetric lattice locations, corresponding to either a =
hL/2 + pk or a = hL/2 + p/2 + pk. The critical current is
given by the maximum of J(h,L,a) given by Eq. (6) with re-
spect to a.

3. Field evolution of lattice structure and critical current

At large L, L� h, the parameter m is close to unity and
the smooth alternating deformation has solutions in the
form of two isolated surface solitons [5]. The monotonic
solution corresponds to solitons of the same sign and the
nonmonotonic solution corresponds to solitons with the
opposite signs. If one neglects interaction between the sol-
itons then the relative sign of the surface solitons has no
importance and the total Josephson current is given by
the sum of two independent surface currents, which do
not depend on the soliton signs [5]. As a consequence,
the product hJc has periodicity of U0/2 per junction. At
finite L the interaction between the surface solitons dis-
turbs such periodicity. At the integer-flux-quanta points
U = kU0 the surface solitons have the same sign and repel
each other. As a consequence, the amplitude of surface
deformations drops and the critical current decreases. At
the half-integer-flux-quanta points U = (k + 1/2)U0 the sit-
uation is opposite: the surface solitons have opposite signs
and attract each other leading to enhancement of the sur-
face deformations and increase of the critical current.

In the region L/h < 1, a transition to the rectangular lat-
tice takes place, corresponding to the limits v0,L! ±p/4
and m!1. One can derive a general conditions for this
state at arbitrary h and a. In particular, the rectangular lat-
tice gives a local energy minimum at a = hL/2 + p/2 in the
regions jU/U0 � (k + 1/2)j < 1/4 if the inequality

j sinðhL=2Þj < tanð
ffiffiffi
2
p

L=hÞ=
ffiffiffi
2
p

is satisfied. The rectangular lattice first appears in the
ground state at points U = (k + 1/2)U0 for L=h 6 l1 ¼
arctanð

ffiffiffi
2
p
Þ=

ffiffiffi
2
p
� 0:675. If L/h is only slightly smaller than

l1 then the rectangular lattice becomes unstable with
increasing current. When L/h drops below l2 � 0.484, the
rectangular lattice remains stable at U = (k + 1/2)U0 up
to the critical current. The rectangular lattice is never real-
ized at the points U = kU0. Regions of ground-state rectan-
gular lattice in the plane size-magnetic field are shown in
Fig. 1. We also show three representative lattice configura-
tions in the crossover region for L = 4.

We systematically investigated the evolution of the field
dependence of the critical current with changing stack size
L. Fig. 2 shows the field dependences of the critical current
for two junction sizes, 2.5 and 4. For the [L = 4]-plot one
can observe that with increasing field [U0/2]-periodic oscilla-
tions smoothly transform into U0-periodic oscillations. This
occurs via suppression of the peaks at U = kU0 and
enhancement of the peaks at U = (k + 1/2)U0. At larger L

the crossover takes place at larger field and larger
U/U0. We also show regions of stable rectangular lattice
in the field-current plane. One can see that in both cases
the rectangular lattice first appears when h/L exceeds 1/l1
and its stability range extends up to the critical current when
h/L exceeds 1/l2. At slow lattice motion in the overdamped
regime the flux-flow voltage has similar field oscillations
with amplitude that roughly scales as U ff J 2

c=J 2
ext, where Uff

is the flux-flow voltage and Jext is the applied transport cur-
rent [5]. The crossover between the wide-stack and narrow-
stack regimes in the flux-flow voltage oscillations has been
recently experimentally studied by Kakeya et al. [8].

In the region L/h� 1 the rectangular lattice occupies
most part of the phase space and the field dependence of



Fig. 1. Left plot shows the phase diagram of the Josephson-junction stack in the coordinates [junction size L/kJ]–[magnetic field h = B/Bcr]. The solid lines
mark fields corresponding to the integer values of the magnetic flux per junctions, U = kU0. The thick dotted lines show boundaries of the the rectangular-
lattice regions in the ground state. The dashed line h = L/l1 marks the crossover between the narrow-stack and wide-stack regimes. Right plots show
representative ground state lattice structures at three marked points corresponding to values U/U0 = 4.4, 3.4, and 3.1 (from top to bottom). Lines show
oscillating z-axis currents in neighboring layers and ellipses mark centers of the Josephson vortices.

Fig. 2. The field dependences of critical current (solid lines) for stack sizes
L = 2.5 and 4 for the same range of the ratio B/BL � h/L shown on the
top axes. To emphasize the periodic nature of these dependences, we
plot the product UJc (in units of JJU0/2p where JJ is the total maximum
Josephson current) vs U/U0. Shaded areas show the regions of stable
rectangular lattice. The rectangular-lattice regions appear in the vicinity
of points U = (k + 1/2)U0 when h/L exceeds 1/l1 � 1.48. When h/L exceeds
1/l2 = 2.07 the rectangular lattice remains stable up to the critical current.
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the critical current approaches the Fraunhofer dependence.
The triangular lattices exist only in the narrow vicinity of
the points U = kU0. In the ground state the transformation
between the triangular and rectangular states occurs via a
first-order transition at the flux values, Ut given by the fol-
lowing equation:

2pUt

U0

sin
pUt

U0

� ����� ���� ¼ 3

2

L
kJ

� �2

. ð12Þ
We also found that, in contrast to the Fraunhofer depen-
dence, the critical current at U = kU0 does not drop to zero
and even has a small peak. The value of Jc at the peak max-
imum decays with U as

J cðU ¼ kU0Þ ¼
J J

ð2p2Þ
U0

U

� �2 L
kJ

� �2

.

On the other hand, the critical current at U = (k + 1/2)U0

is achieved at the instability point of the rectangular lattice
and it is close to the ‘‘Fraunhofer’’ value Jc = JJU0/(pU).

In summary, we studied the magnetic field evolution of
the ground-state lattice configurations and critical current
in the intrinsic Josephson-junction stacks with lateral size
larger or comparable with the Josephson length. With
increasing magnetic field the period of the critical-current
oscillations evolves from U0/2 per junction to U0 per junc-
tion. This crossover takes place when the magnetic field
reaches the typical value BL proportional to the junction
lateral size. At B > BL the lattice has rectangular configura-
tion in most part of the phase space and the field depen-
dence of the critical current is close to the Fraunhofer
dependence. The only exception are narrow regions in the
vicinity of the points U = kU0 where the lattice transforms
to the triangular state via a first-order phase transition.
Due to this transition, the critical current does not vanish
at these points and even has small peaks.
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