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We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic
Josephson junctions of layered superconductors. We consider the superradiation regime for a crystal cut in
the form of a thin slice parallel to the c axis. We find that the radiation correction to the current-voltage
characteristic in this regime depends only on crystal shape. We show that at a large number of junctions
oscillations are synchronized providing high radiation power and efficiency in the terahertz frequency
range. We discuss the crystal parameters and bias current optimal for radiation power and crystal cooling.
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Josephson junctions (JJs), as sources of tunable continu-
ous electromagnetic (EM) radiation, were discussed for a
long time after the prediction of the ac Josephson effect [1].
Early measurements [2] demonstrated that emittence from
a single JJ has very low power, typically �10�6 �W.
Since then significant effort has been devoted to develop
JJ arrays as coherent sources of radiation; see, e.g.,
Refs. [3,4]. A major challenge is to force all JJs in array
to emit coherently, so that power increases proportionally
to the square of the total number of junctions [3]. In
particular, for an array of 500 junctions a maximum power
of the order of 10 �W at discrete frequencies �0:4 THz
has been achieved so far in the superradiation regime [5].
The difficulties in synchronizing many artificial JJs are
related mainly to the fact that artificial junctions always
have slightly different parameters, especially the
Josephson critical current, and that one cannot put many
of them at distances smaller than a wavelength but needs to
distribute them over a wavelength or more [3,4]. Also, as
the maximum frequency is limited by the superconducting
gap, it cannot exceed several hundred gigahertz for struc-
tures fabricated out of conventional superconductors.

Layered high-temperature superconductors like
Bi2Sr2CaCu2O8 (BSCCO) offer a very attractive alterna-
tive for developing radiation sources [6]. A large value of
the gap (up to 60 meV) allows for very high Josephson
frequencies, which can be brought into the practically
important terahertz range. Moreover, intrinsic JJs (IJJs)
have much closer parameters than artificial ones as these
parameters are controlled by the atomic crystal structure
rather than by amorphous dielectric layer in artificial JJs.
Also, layered superconductors provide a very high density
of IJJs (1 per 15.6 Å along the c axis) and thus it is easy to
reach the superradiation regime with many junctions on the
scale of radiation wavelength. In this regime the radiated
EM field effectively couples JJs and helps to synchronize
them. In this Letter we demonstrate that the superradiation
regime indeed results in the synchronization of Josephson
oscillations in IJJs in zero external magnetic field. Thus the
c-axis current biased crystal may work as a source of

Josephson coherent emission of radiation. We calculate
the radiation power and IV characteristics and discuss an
optimal crystal geometry accounting for heating due to
quasiparticle dissipation.

So far mostly radiation from the flux flow of the
Josephson vortices has been discussed in the literature
[6]. The inductive interlayer coupling typically promotes
formation of the triangular vortex lattice. However, to
generate noticeable outside radiation, oscillations induced
by the moving lattice have to be in phase in different layers,
which is realized only if the moving vortices form a
rectangular lattice. No regular way to prepare such a
lattice is known at present. In addition, it seems to be
unstable in most of parameter space [7,8]. Here we con-
sider the synchronization of the Josephson oscillations by
radiation field in the simplest case: when dc magnetic field
is not applied and only radiation itself introduces the in-
plane phase gradients.

In the resistive state phases ’n oscillate at the Josephson
frequency, !J � 2eV=@, where the voltage V between the
neighboring layers is induced by interlayer dc current. For
uniform oscillations and identical junctions the voltage V
is the same in all junctions (except, possibly, top and
bottom junctions in the stack) because the same current
flows between all layers. To reach a resistive state the pulse
of dc current exceeding the Josephson critical current
should be applied, but then current may be diminished to
reach the necessary voltage. Transport measurements in
BSCCO have shown that the resistive state on a current-
descending branch is preserved down to the voltage Vp �
@!p=2e, where!p is the Josephson plasma frequency; see,
e.g., Ref. [9] [!p=�2�� � 0:15 THz in optimally doped
BSCCO]. We consider crystal with sizes Lx, w, and Lz �
Ns in the directions x, y, and z, respectively; see Fig. 1. The
conditions Lx; Lz & k�1

! � c=!J are necessary for the
superradiation regime. The boundary conditions for the
oscillating phase are sensitive to distribution of outside
EM fields which, in turn, depend on geometry of the stack
and electric contacts. We consider the simplest geometry
assuming that (i) w� k�1

! so that all quantities are y
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independent, and (ii) JJ stack is bounded by metallic or
superconducting contacts with the same lateral sizes as the
stack which extend in the z direction over distance Lsc �
k�1
! (see Fig. 1). We also assume that the contact material

has a very small surface impedance so that the ac electric
field at the contact surface is negligible. Such contacts
serve as ‘‘screens,’’ restricting radiation to half-infinite
spaces jxj>Lx=2. This greatly simplifies the analytical
consideration. As dissipation increases with Lx and radia-
tion does not, we argue that optimal crystal should be
platelike with Lx < Lz.

To find the phase differences ’n�x; t� inside the crystal
we solve finite-difference differential equations (see, e.g.,
Ref. [8]),

 

@2’n
@�2

� ��r2
n � 1�

�
�c
@’n
@�
	 sin’n �ruhy;n

�
; (1)

 �r2
n � ‘�2T̂ab�hy;n 	 T̂abru’n � 0: (2)

We use a reduced x coordinate, u � x=�J, normalized to
�J � �s, reduced time, � � !pt and ! � !J=!p, with
!p � c=��c

�����
�c
p
�, and reduced magnetic field hy;n �

By;n=Bc with Bc � �0=�2��ab�c�, where By;n is the mag-
netic field between the layers n and n	 1. Here �c is the
c-axis dielectric constant inside the superconductor, �ab
and �c are the London penetration lengths, � � �c=�ab is
the anisotropy ratio. In terms of these parameters the
Josephson critical current is Jc � �0c=�8�

2s�2
c�.

Further, T̂ab 
 1	 �ab@=@�, ‘ 
 �ab=s, r2
n notates the

discrete second derivative operator, r2
nAn�An	1	

An�1�2An, and �� 0:1–1 is the parameter of the capaci-
tive coupling [10]. The dissipation parameters, �ab �
4�	ab=��

2�c!p� and �c � 4�	c=��c!p�, are determined
by the quasiparticle conductivities, 	ab and 	c, along and
perpendicular to the layers, respectively. The electric field
inside the superconductor between the layers n and n	 1
is given by

 �1� �r2
n�Ezn � �Bc‘=

�����
�c
p
��@’n=@��: (3)

The typical parameters of optimally doped BSCCO at low

temperatures are �c � 12, s � 15:6 �A, � � 500, �ab �
200 nm, Jc�1700 A=cm2, 	c�0� � 2� 10�3 �� cm��1,
	ab�0� � 4� 104 �� cm��1 [11]. This gives ‘ � 130,
�ab � 0:2, and �c � 2� 10�3. An important feature of
BSCCO is that �ab � �c.

The boundary conditions, i.e., relations between time
and space derivatives of ’n at the edges parallel to (y; z),
are determined by the relations between the electric and
magnetic fields in the outside media. As the y and z sizes of
the system (crystal and screens) are assumed to be larger
than the wavelength, the dielectric media can be treated as
infinite in these directions. Such a half-infinite space ge-
ometry allows us to find the boundary conditions analyti-
cally. From the Maxwell equations in the free space we find
the relationship between the magnetic, B � �0; By; 0�, and
the electric, E � �Ex; 0; Ez�, fields at the boundaries. We
assume that there are only outgoing waves from the crystal
(y; z) edges, meaning that the fields have the coordinate
and time dependence exp�ikxjxj 	 ikzz� i!��, where
kx � sgn�!��k2

! � k2
z�

1=2 for k2
z < k2

! and kx �
i�k2

z � k
2
!�

1=2 for k2
z > k2

!. The relations between fields at
u � � ~Lx=2 ( ~Lx � Lx=�J) are [12]
 

By�!; kz� � 
!�kz�Ez�!; kz�;


!�kz� �

(
jk!j�k

2
! � k

2
z�
�1=2; for k2

z < k2
!;

�ik!�k
2
z � k

2
!�
�1=2; for k2

z > k2
!:

(4)

Inverse Fourier transform with respect to kz gives nonlocal
relation between the magnetic and electric fields at the
edges. As we assume that the screen material has small
surface impedance, we can neglect the electric field at
jzj>Lz=2 and, using Eq. (3), we obtain the reduced
boundary condition connecting hy;n with the phases at the
edges [hy;n is expressed via r’n by Eq. (2)],
 

�hy;n;! �
is‘!
2
�����
�c
p

X
m

�1� �r2
m�
�1’m;!�jk!jJ0�k!sjn�mj�

	 ik!N0�k!sjn�mj��; (5)

where J0�x� and N0�x� are the Bessel functions.
We consider high-frequency Josephson oscillations,

! � !J=!p � 1, in the case of layered crystals with a
large number of junctions N * ‘. This allows us to neglect
finite-size effects along the z axis. The equation for uni-
form solution ’n�u; �� � ’�u; �� is

 @2’=@�2 	 �c@’=@�	 sin’� ‘2r2
u’ � 0: (6)

In the limit !� 1 we look for the solution in the form
’�u; �� � !�	��u; �� with �� 1. Equation (5) gives
the boundary conditions for � at u � � ~Lx=2 [12],
 

ru���i!
�;


 �
Lz

2‘
�����
�c
p �jk!j� ik!L!�; L! �

2

�
ln
�

5:03

jk!jLz

�
: (7)

The solution is ��u; �� � Im��!�u� exp��i!���, where

LZ

Lx Jx
yz

Lsc PxPx

J

w

FIG. 1 (color online). Left: Schematic picture of layered su-
perconductor placed in between platelike leads serving as
screens. The directions of the dc transport current J, and of
the radiation Poynting vectors Px, are shown. Right: Influence of
radiation on current-descending branch of the IV dependence.
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 �!��
1

!2	 i!�c
	

i
 cos� �k!u�=�!	 i�c�
�k! sin� �k! ~Lx=2�	 i
!cos� �k! ~Lx=2�

;

(8)

with �k! � !=‘ and j
j � 1. The first term in �! is the
amplitude of the Josephson oscillations, while the second
term describes the EM waves propagating inside the junc-
tions. They are generated at the boundaries due to the
radiation field.

Next we show that coherent radiation field, similar to all
junctions, in combination with intralayer dissipation sta-
bilizes the uniform Josephson oscillations. For that we
have to consider a small perturbation to the uniform solu-
tion, ’n�u; �� � !�	��u; �� 	 #n�u; ��, and verify that
there are no perturbations, #n�u; ��, increasing with time.
The general analysis is rather cumbersome. Results in a
closed form may be obtained only by use of approxima-
tions valid in the limiting case considered here, Lx; Lz �
k�1
! , !� 1, and ‘� 1.

Equations for #n�u; �� are obtained by linearization of
Eqs. (1) and (2). The term cos������#n�u; �� �
cos�!��#n�u; �� in the linearized equation couples har-
monics with small frequency � with the high-frequency
terms ��!. At !� 1 we can neglect coupling to the
higher frequency harmonics ��m! with m> 1 and
represent the phase perturbation (and field) as

 #n�
X
q

�
�#q	

X
���1

~#q;�exp�i�!��
�

sin�qn�exp��i���;

with q � �k=�N 	 1�, k � 1; 2; . . . ; N. Here the complex
eigenfrequency � � ��q� is assumed to be small, j�j �
!, and has to be found. Stability means that Im���< 0 for
all q. Substituting this presentation into the linearized
equations (1) and (2), excluding oscillating magnetic
fields, and separating the fast and slow parts, we obtain
coupled equations

 

�
�2

1	 �q
	 i�c�� �C

�
�#q 	G�2

q r
2
u

�#q �
~#q;	 	 ~#q;�

2
;

(9)

 

�
��!�2

1	 �q
	 i�c��!�

�
~#q;� 	G

�2
q;�r

2
u

~#q;� �
�#q
2
:

(10)

Here �C 
 hcos�i� � Re��!�=2, �q 
 �~q2 with ~q2 �

2�1� cosq�, G2
q;� � ~q2=�1� i��� �!��ab� 	 ‘

�2, and
Gq � Gq;0. Using Eqs. (2) and (4) (in the limit k2

z > k2
! due

to k!Lz � �) and (5) we get the boundary conditions for
slow and fast components at u � � ~Lx=2 for q� �=N,

 ru �#q��0
�#q; 0�G2

q�2=��1	�q��cq��; (11)

 ru ~#q;� � �� ~#q;�; � �
��� �!�2G2

q;�

�1	 �q��cq�
: (12)

Because of the condition j�j � !, in most cases one can

neglect � in equation and boundary conditions for ~#q;�.
We also assume �c � 1� ! and neglect dissipation
when it is not essential. As �#q varies at the typical length
scale �1=Gq�, which is much larger than Lx, the
coordinate-dependent part of �#q can be treated as a small
perturbation. Neglecting the coordinate dependence of �#q
in the equation for ~#, we obtain the approximate solution
of Eqs. (10) and (12). Substituting it into Eq. (9), we obtain
the Mathieu equation for the slow-varying component

 

�
�2

1	�q
	 i�c��

�q
2!2�V�u�	G

�2
q r

2
u

�
�#q�0; (13)

where V�u� � V1�u� 	 V2�q; u�,
 

V1�u� �
1

2!2 Re
�

i
! cos� �k!u�
�k! sin� �k! ~Lx=2� 	 i
! cos� �k! ~Lx=2�

�
;

V2�q; u� �
1

2!2 Re
�

	 cosp	u

p	 sin�p	 ~Lx=2� 	 	 cos�p	 ~Lx=2�

�
;

and p	 � !Gq;	. In the regime �k! ~Lx � 1, the part V1�u�
reduces to a constant, V1�u� �K!=�2!2� with K!�
�L!�L!	"ca�	1�=��L!	"ca�

2	1� and a � Lx=Lz.
Equation (13) and the boundary conditions (11) deter-

mine the spectrum of small perturbations to the uniform
solution. Treating the coordinate-dependent part of �#q as a
small perturbation, we derive the expression for ��q�,
 

�2	 i�c����q	K!�W2�q��=�2!2�;

W2�q��Re�2=fp	 ~Lx�p	=		cot�p	 ~Lx=2��g�: (14)

From this result we can conclude that the main contribution
to stabilization of uniform oscillations comes from the
term K!, describing effective coupling of junctions due
to the radiation. Its stabilization effect increases with Lz as
K! � L!Lz=�cLx for Lz < �cLx and K! ! 1 for Lz >
�cLx. The charging-effect term �q also contributes to
stabilization. The term W2 describes the effect of modes
~#q;� induced inside the crystal due to radiation. Formally,
the W2 term leads to instabilities in the limit of zero
dissipation because its denominator vanishes near the
resonance values of q given by 2�1� cosq� �
�2�m=�! ~Lx��

2 � 1=‘2, where m is an integer. These in-
stabilities correspond to parametric excitation of the Fiske
resonances described by Eq. (10). However, they are sup-
pressed already by very small dissipation. Indeed, at small
dissipation we estimate the maximum value of W2

as �q�"cIm�p	� ~L
2
x�
�1, where Im�p	� � sin�q=2��

��c 	 �ab!2�. As �ab!2 � �c, we see that jW2;maxj � 1
for �ab � 1=�2�2�"c� � 10�5. For a realistic level of
dissipation in BSCCO, �ab � 0:2, the resonance features
in W2 are completely washed out and jW2j � 1 for all q’s.
Thus the intralayer dissipation stabilizes uniform oscilla-
tions, but it does not affect them in any other way.

We derive now the radiation power and IV character-
istics. The Poynting vector Px at x � �Lx=2 in terms of
the oscillating phase (8) is given by [12]
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 Px�!� � �
�2

0!
3
J

64�3c2sN

X
n;m

J0�k!sjn�mj�j’!��Lx=2�j2:

At �k! ~Lx � 1, we obtain for the total radiation power
P rad�!� � Px�!�Lzw going from one side,
 

P rad�!J�=w � ��2
0!

4
pN2=�64�3c2!J��L�a�;

L�a� � a2�2
c=��a�c 	L!�

2 	 1�:
(15)

For small Lx; Lx � Lz=�c, P rad / L
2
x and it is N indepen-

dent, while for larger Lx the geometrical factor L�a� ! 1,
meaning that P rad / N

2 and it is Lx independent.
The dc interlayer current density J consists of quasipar-

ticle contribution, 	cV=s, and the Josephson part Jc sin’
averaged over � and u. We derive for j � J=Jc,

 j � �c!	
1

2
hIm��!�iu � �c!	

�c
2!3 	

L�a�

2!2�ca
: (16)

The last term, jrad, describes contribution to the dc current
due to radiation losses. This part of the current multiplied
by the total voltage gives the total radiation power 2P rad.
As a function of ! the current j has a minimum at ! �
!m � �L�a�=�c�ca��

1=3 � 1. The influence of radiation
on the IV dependence is illustrated in Fig. 1. Only part of
the IV characteristics at !>!m is stable. At the voltage
Vm � @!m=2e, corresponding to the current jm �
�3=2��c!m, the stack jumps back to the static state. At
this ‘‘retrapping’’ current the dissipation power is twice
that of the radiation power; i.e., for the conversion effi-
ciency we obtain 2P rad=�P dis 	 2P rad� � 1=3.

An important issue is the stability of the coherent state
with respect to parameter variations from layer to layer,
which may include the crystal width �Lxn and the
Josephson current density �Jcn. The coherent solution
with the same voltage drop in all junctions V must satisfy
the current conservation condition. Such a solution can be
built as’n�u; �� � !�	�!;n�u; �� 	 �n, where the addi-
tional phase shifts�n compensate for parameter variations.
In the case of smooth parameter variations and �� 1, we
can derive correction to the local current and obtain

 sin��n� � hsin��n�i �
�Lxn
hLxni

�c!
jrad
�
�Jcn
hJcni

hsin��n�i;

where h� � �i is average over n. We see that the coherent
state survives until �Lxn=hLxni< jrad=��c!� and �Jcn <
hJcni. These conditions do not impose too demanding
restrictions on the acceptable range of parameter
variations.

Evaluating the Joule heating, we find that the cooling
rate Q per unit area of each crystal side k yz should be

 Q �
�2

0!p�c
32�3�2

cs2 !
2Lx �

�
!
!m

�
3 2P rad

Lzw
: (17)

The maximum efficiency is reached at ! � !m. To
achieve this at frequencies close to 1 THz, one needs to

maximize !m / �L�a�=a�1=3 by optimizing the crystal
shape. At L! � 1 we get max�L�a�=a� � �c=4 at a �
1=�c. This gives !m � 5 corresponding to !J=�2�� �
0:75 THz. At this frequency, assuming Lz � 40 �m, the
optimum lateral sizes are Lx � 4 �m and w> 300 �m.
Biased with the current density � 0:01Jc, such a crystal
radiates with the power P rad=w � 30 mW=cm from each
side, while it should be cooled with the rate Q �
15 W=cm2 at each side [13]. As Lx increases, P rad=w
saturates to � 0:2 W=cm at !�!m / L

�1=3
x , while Q

increases linearly with Lx. We note that increasing the
number of layers also promotes synchronization of oscil-
lations by the radiation field.

In conclusion, we have shown that uniform Josephson
oscillations in IJJs of layered superconductors are stable in
the superradiation regime at high frequencies !J � !p.
They lead to coherent radiation into free space with sig-
nificant power and efficiency as high as 1=3 at frequencies
�1 THz. An important point is that to have a reasonable
cooling rate and strong radiation the crystal should be in
the form of a thin plate along the c axis with a large number
of layers N � 104.
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