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A key phenomenon related to the Josephson effect is oscillations of the different properties of supercon-
ducting tunneling junctions with magnetic field. We consider magnetic oscillations of the critical current in
stacks of intrinsic Josephson junctions, which are realized in mesas fabricated from layered high-temperature
superconductors. The oscillation behavior is very different from the case of a single junction. Depending on the
stack lateral size, oscillations may have either the period of half a flux quantum per junction �wide-stack
regime� or one flux quantum per junction �narrow-stack regime�. We study in detail the crossover between
these two regimes. The typical size separating the regimes is proportional to the magnetic field, meaning that
the crossover can be driven by the magnetic field. In the narrow-stack regime the lattice structure experiences
a periodic series of phase transitions between aligned rectangular configurations and triangular configurations.
Triangular configurations in this regime are realized only in narrow regions near magnetic-field values corre-
sponding to an integer number of flux quanta per junction.
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I. INTRODUCTION

Layered high-temperature superconducting materials,
such as Bi2Sr2CaCu2Ox �BSCCO�, are composed of super-
conducting cuprate layers coupled by Josephson interaction.
This system possesses the Josephson effect at the atomic
scale �“intrinsic Josephson effect”�. A rich spectrum of clas-
sical dc and ac Josephson phenomena have been observed in
this system; see reviews in Refs. 1 and 2.

In a bulky superconductor the magnetic field applied
along the layers generates a triangular lattice of Josephson
vortices. The anisotropy factor � and the interlayer periodic-
ity s set the important field scale Bcr=�0 / �2��s2� ��0.5 T
for BSCCO�. When the magnetic field exceeds Bcr the Jo-
sephson vortices homogeneously fill all layers.3 Strong cou-
pling between the vortex arrays in neighboring layers medi-
ated by in-plane supercurrents4 determines the static and
dynamic properties of the lattice. The dynamic properties of
the Josephson-vortex lattice in BSCCO have been exten-
sively studied by several experimental groups �see, e.g.,
Refs. 5–8�.

When an external transport current flowing across the lay-
ers exceeds the critical current, the Josephson-vortex lattice
starts to move. In a homogeneous junction the critical current
is determined by interaction with the boundaries. The sim-
plest and most known case is a single small junction without
inhomogeneities, where the field dependence of the critical
current is given by the Fraunhofer dependence, Ic���
= Ic0�sin��� /�0�� / ��� /�0�, with � being the magnetic flux
through the junction. Observation of this dependence has
been considered as an important confirmation of the dc Jo-
sephson effect.9 The same dependence is also expected for
the junction stack with lateral size smaller than the Joseph-
son length.10 In a single long junction the critical current has
a rather complicated field dependence due to multiple coex-
istent states of the lattice.11

In a previous paper12 we considered the behavior of the
critical current for a dense Josephson-vortex lattice in a ho-
mogeneous wide stack for which the critical current is

caused by interaction with the boundaries. We found that the
boundary induces an alternating deformation of the lattice.
Averaging out the rapid phase oscillations, we obtained that
the lattice deformation obeys the sine-Gordon equation and
decays inside the superconductor at the typical length LB /�8,
which is larger than the Josephson length, �J=�s, and in-
creases proportional to the magnetic field, LB=�JB /Bcr.

13

The stack is in the wide-stack regime if its lateral width L is
larger than this typical length. In this situation the surface
deformation and the total current flowing along the surface is
uniquely determined by the lattice position far away from the
boundaries. The surface current has oscillating dependence
on the lattice displacement and, due to the triangular-lattice
ground state, the period of this dependence is half the lattice
spacing. The total current flowing through the stack is given
by the sum of two independent surface currents flowing at
the sample edges. The magnetic field determines the magni-
tude of the maximum surface current �it is inversely propor-
tional to the field� and sets the phase shift between the oscil-
lating dependences of the two surface currents on the lattice
position. One can trace that, due to the half-lattice-spacing
periodicity of the surface current, a full period change of this
phase shift corresponds to a change of the magnetic flux
through one junction, �, equal to the half flux quantum,
�0 /2. As a consequence, the maximum current through the
stack has oscillating field dependence, which resembles the
Fraunhofer dependence: it has strong oscillations and overall
1 /B dependence. However, the period of these oscillations is
2 times smaller: it corresponds to adding one flux quantum
per two junctions and the critical current has local maxima at
�=k�0 /2.

Oscillations of the flux-flow voltage in BSCCO mesas at
slow lattice motion have been observed by Ooi et al.8 The
oscillations have the period of �0 /2 per junctions and are
caused by the size-matching effect described in the previous
paragraph. These oscillations have been reproduced by nu-
merical simulations.14 More recently the flux-flow oscilla-
tions in BSCCO mesas have been reproduced and studied
in more detail by several experimental groups.15–18 Similar
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oscillations also have been observed in underdoped
YBa2Ca3O6+x.

19 The size dependence of oscillations has
been systematically studied in Refs. 15 and 17. It was found
that at smaller lateral sizes and/or higher magnetic fields the
crossover to the new oscillation regime takes place, in which
the period becomes �0 per junction, as in a single junction.

Being motivated by recent experiments, in this paper we
extend our consideration to the regime when the junction
size L is comparable with the length LB and the system
crosses over from the wide-stack to narrow-stack regime. As
the length scale LB increases with the magnetic field, it also
sets the field scale BL=BcrL /�J, at which this length becomes
of the order of the junction length L. Therefore for a junction
of a given size the crossover to the narrow-stack regime can
be driven by the magnetic field, as was observed
experimentally.15 �0 /2 periodicity of the critical-current os-
cillations holds until interactions between surface deforma-
tions can be neglected. This interaction becomes progres-
sively stronger with decreasing ratio L /LB. Surface
deformations at L�LB can be described as partial sine-
Gordon solitons.20 The relative sign of two solitons at the
opposite edges is determined by the magnetic field and the
lattice positions. At the integer-flux-quanta points �=k�0
the surface solitons always have the same sign and repel each
other. As a consequence, the amplitude of surface deforma-
tions drops and the critical current decreases. At the half-
integer-flux-quantum points �= �k+1/2��0 the situation is
the opposite: the surface solitons always have opposite signs
and attract each other, leading to enhancement of the surface
deformations and an increase of the critical current. There-
fore interaction between the surface solitons leads to a cross-
over between the �0 /2-periodic oscillations of the critical
current and �0-periodic oscillations. This crossover occurs
via suppression of the current peaks at the points �=k�0
and enhancement of the current peaks at the points �= �k
+1/2��0. Such behavior is consistent with recent studies of
the oscillations of the flux-flow voltage in mesas with small
lateral sizes.15–17 The crossover in the voltage oscillations
also has been studied numerically.16,21

In the region L�LB the lattice structure is determined by
competition between two energies: the interaction with
boundaries and the bulk shearing interaction between the

Josephson-vortex planar arrays in neighboring layers. The
interaction with the boundaries favors the aligned rectangular
arrangement of the Josephson vortices while the local shear-
ing interaction favors the triangular lattice. The boundary
interactions decay slower with increasing field than the
shearing interaction and become dominating at large fields.
On the other hand, the boundary interaction energy has os-
cillating field dependence and vanishes at the points �
=k�0. At these points the shearing interaction is relevant at
any magnetic field. In addition, the interaction with the
boundaries is suppressed by the external current.

In the region L�LB the rectangular arrangement of vorti-
ces is realized in most of the phase space and the field
dependence of the critical current approaches the classical
Fraunhofer dependence. Two important deviations persist at
all fields and sizes: �i� Near the points �=k�0 phase transi-
tions to the triangular lattice always take place. The critical
current at these points never drops to zero and actually al-
ways has a small local maximum. �ii� Away from the points
�=k�0 the critical current is reached at the instability
point of the rectangular vortex lattice and it is always
somewhat smaller than the “Fraunhofer” value
Ic0�sin��� /�0�� / ��� /�0�. Therefore, we somewhat revise
the statement of Ref. 10 that the behavior of a small stack is
identical to a single small junction. The results described
have been summarized in a short paper published in confer-
ence proceedings.22 The static lattice structures at different
fields and sizes have also been studied numerically in Refs.
23 and 21, and the results are in qualitative agreement with
the picture described.

To illustrate a general picture, we show in Fig. 1 �left� the
ground-state phase diagram of the junction stack in the field-
size plane, where h=B /Bcr is the reduced magnetic field.
Solid lines mark the magnetic fields corresponding to integer
values of the magnetic flux per junction, and dotted lines
show boundaries of the rectangular-lattice regions for zero
current through the stack. As one can see, these regions ap-
pear above the line h=1.48L /�J and they are always
bounded by the integer-flux-quantum lines. In the right plot
the same diagram is replotted in different coordinates, num-
ber of flux quanta per junction � /�0 vs ratio L /LB
�L / �h�J�, which controls the wide-stack–narrow-stack

FIG. 1. �Color online� Left plot: phase diagram of the Josephson-junction stack in the coordinates �reduced junction size L /�J�-�reduced
field h=B /Bcr�. The solid lines mark fields corresponding to the integer values of the magnetic flux per junctions, �=k�0. Dotted lines show
boundaries of the transitions into the rectangular lattice for the ground state. Right plot: the same diagram in the coordinates �number of flux
quanta per junction � /�0�-�ratio L /LB�L / �h�J��.
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crossover. It is interesting to note that in these coordinates
the diagram is periodic with respect to the magnetic flux
through the junction.

The paper is organized as follows. In Sec. II we outline
the derivation of the phase distribution in the case of alter-
nating from layer to layer solution. Averaging with respect to
the rapidly changing phase oscillations, we obtain equation
and boundary conditions for the slow lattice deformation. We
also express the lattice energy and current flowing through
the stack via this deformation. In Sec. III we obtain and
analyze a solution for the smooth phase in terms of elliptic
integrals. We found that the problem can be reduced to solu-
tion of three nonlinear coupled equations for three un-
knowns: the boundary phases and elliptic parameter. In Sec.
IV we derive a criterion for the transition into the
rectangular-lattice state. In Appendix B we consider weak
finite-size effects in the wide-stack regime and analytically
compute exponentially small finite-size corrections to the
critical current, which break the �0 /2 periodicity of oscilla-
tions. In Sec. V we present the results of a numerical analysis
of the crossover between the wide-stack and narrow-stack
regimes with increasing magnetic field. We obtain the oscil-
lation patterns of the critical current for stacks with different
lateral sizes and find the location of the rectangular-lattice
regions in the current-field plane. In Sec. VI we reanalyze in
detail the narrow-stack regime using an independent analyti-
cal approach. In Sec. VII we consider the voltage oscillations
in the case of a slowly moving lattice and relate these oscil-
lations to the critical-current oscillations. We elaborate on the
recipe to extract the anisotropy factor from the voltage oscil-
lations.

II. PHASE DISTRIBUTION AND ENERGY OF A FINITE
STACK ASSUMING AN ALTERNATING SOLUTION

We consider a Josephson-junction stack consisting of N
layers, N�1, with lateral size equal to L in a magnetic field
B�Bcr applied along the layers. At high magnetic fields one
can neglect screening effects. In this case the stack is de-
scribed by the energy functional �per layer and per unit
length in the field direction� of the layer phases 	n�x�,

E�	n� =
1

N
	

n



0

L

dx� J

2
�d	n

dx
2

− EJ cos�	n+1 − 	n −
2�sB

�0
x� , �1�

where J is the in-plane phase stiffness and EJ is the Joseph-
son energy per unit area. To simplify derivations, we intro-
duce the reduced coordinate u=x /�J, with �J=�J /EJ, re-
duced magnetic field h=2�s�JB /�0, and reduced energy E
=E / �EJ�J�. We also represent the phase variable in the form
which naturally describes the dense triangular lattice in the
bulk in the limits h�1 and L /�J�h, 	n�u�=
n�u�+�n
+�n�n−1� /2, where the phases 
n�u� are assumed to be
small and rapidly oscillating and the parameter � will de-
scribe lattice displacement. The reduced energy per one junc-
tion and per unit length in the field direction can now be
represented as

E�
n� =
1

N
	

n



0

L

du�1

2
�d
n

du
2

− cos�
n+1 − 
n − hu + � + �n�� . �2�

The oscillating behavior is determined by the reduced pa-
rameter hL which is directly related to the total magnetic flux
through one junction �=BLs,

hL = 2��/�0.

We consider a stack containing a very large number of junc-
tions, N�1. This will allow us to focus on bulk behavior and
neglect c-axis boundary effects coming from the top and
bottom junctions, which give 1/N corrections to the bulk
results. We will also not consider potentially interesting “par-
ity effects,” small differences between stacks containing an
odd and even number of junctions, which have the same
order.

Following Ref. 12, we will assume an alternating phase
distribution in the form 
n= �−1�n
. This distribution de-
scribes both the deformed triangular lattice in the wide-stack
regime and the transition to the rectangular lattice in the
narrow-stack regime. Substituting this presentation into Eq.
�2�, we represent the energy functional as

E��;
� = 

0

L

du�1

2
�d


du
2

− sin�2
�sin�− hu + ��� . �3�

The lattice energy as a function of displacement, Ē���, is
determined by the minimum of the functional E(� ;
�u�)
with respect to 
�u�, Ē���=min
�E�� ;
��. As the energy
functional has a symmetry property �→�+�, 
→−
, the

energy Ē��� is � periodic with respect to a shift of �, Ē��
+��= Ē���.

The ground-state phase distribution 
 obeys the equation

d2


du2 + 2 cos�2
�sin�− hu + �� = 0, �4�

which has to be solved with the boundary conditions

d


du
= 0, for u = 0,L . �5�

In the limit h�1 a further significant simplification is pos-
sible: we can average out rapid phase oscillations and derive
a simplified equation for a smooth phase perturbation. We
split the total phase into the smooth and rapidly oscillating
components


�u� = v�u� + 
̃�u� , �6�

where we assume �
̃�, �dv /du � �1. The maximum value of
v�u�, vmax=� /4, corresponds to a rectangular lattice. The
rapidly oscillating phase by definition obeys the equation

d2
̃

du2 + 2 cos�2v�sin�− hu + �� = 0, �7�

which has the approximate solution
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̃ �
2

h2 cos�2v�sin�− hu + �� . �8�

To first order with respect to 
̃, the equation for v�u� is given
by

d2v
du2 − 4
̃ sin�2v�sin�− hu + �� = 0.

Substituting into this equation the oscillating phase �8� and
averaging it with respect to rapid oscillations, we finally ob-
tain the sine-Gordon equation for the smooth phase:

d2v
du2 −

2

h2 sin�4v� = 0. �9�

Computing the derivatives of the rapid phase �8� at the
edges, we also derive the boundary conditions for the smooth
phase:

dv
du

�0� =
2

h
cos�2v0�cos��� , �10a�

dv
du

�L� =
2

h
cos�2vL�cos�− hL + �� , �10b�

with v0�v�0� and vL�v�L�. The local current density j�u�
= jJ sin��n,n+1�u��, with jJ being the maximum Josephson cur-
rent density, is determined by the gauge-invariant phase dif-
ference �n,n+1�u��
n+1−
n−hu+�+�n, which is related to
v�u� as

�n,n+1 � − hu + � + �n − �− 1�n2v

−
4

h2 cos�2v�sin�− hu + � + �n� . �11�

Substituting the phase presentation given by Eqs. �6� and
�8� into the energy �3� and averaging with respect to the
rapid oscillations, we derive the energy functional in terms of
the smooth phase v,

E��;v� �
1

h
�sin�2v0�cos��� − sin�2vL�cos�− hL + ���

+ 

0

L

du�1

2
�dv

du
2

−
1 + cos 4v

2h2 � . �12�

To shorten the notation, we omitted the arguments h and L in
E�� ,h ,L ;v�. Minimization of this energy functional with re-
spect to v�u� gives the energy as a function of the lattice shift

�, Ē���. The minimum of this energy with respect to � gives
the ground state for a given h and L. Higher-energy states at
other values of � typically carry a finite current. The total
Josephson current flowing through the stack is proportional

to dĒ /d�. Taking the derivative of the functional �12� with
respect to �, assuming that at every � it is minimized with
respect to v�u�, we obtain

J��� =
1

h
�− sin�2v0�sin � + sin�2vL�sin�− hL + ��� .

�13�

The unit of current in this equation is jJ�Jw where jJ is the
Josephson-current density and w is the junction size in the
field direction. An important consequence of this equation is
that nonzero current exists only if the surface deformations
v0 and vL are finite. Further analysis is based on Eqs. �9�,
�10�, �12�, and �13�.

III. SOLUTIONS FOR THE SMOOTH PHASE

A general solution of the sine-Gordon equation �9� can be
found in terms of elliptic integrals. From the first integral of
Eq. �9� we obtain

dv
du

= d
�2

�1/m − cos2�2v�
h

, �14�

with d�sgn�dv /du�= ±1 and m is the elliptic parameter
which has to be found from the boundary conditions. From
this equation we obtain an implicit equation for the deforma-
tion v�u�,



v0

v dv
�1/m − cos2�2v�

= d
�2u/h . �15�

To rewrite this equation using standard elliptic integrals, we
introduce a new variable 	,

	 = �/2 + 2v . �16�

This variable has its own physical meaning: it describes the
alternating deformation of the interlayer phase difference
with respect to the rectangular-lattice state. In particular, 	
=0 corresponds to the rectangular lattice. Using these vari-
ables, we can rewrite Eq. �15� as

�m�F�	,m� − F�	0,m�� = d
�8L/h , �17�

where

F�	,m� � 

0

	 dx
�1 − m sin2 x

is an incomplete elliptic integral of the first kind.24

In the limit of very large L the deformation v has to van-
ish far away from the edges, meaning that m→1. For finite-
size junctions, depending on hL and �, the solution v�u� can
be either monotonic or nonmonotonic. For the nonmonotonic
solution the derivative dv /du and the parameter d change
sign inside. The monotonic solution can either change sign
�v0vL�0,m�1� or not �v0vL�0�. For large L the mono-
tonic solution corresponds to the two surface partial solitons
of the same sign and the nonmonotonic case corresponds to
the surface solitons of opposite signs. A mathematical struc-
ture of solutions for these two cases is different, and we will
consider them separately.

First, we find some general relations between the bound-
ary phases and the parameter m. From the boundary condi-
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tions �10a� and �10b� and Eq. �14� we obtain equations

0
�1/m − cos2�2v0� = �2cos�2v0�cos��� , �18a�

L
�1/m − cos2�2v0� = �2cos�2vL�cos�hL − �� , �18b�

with 0=d�0� and L=d�L� �for a monotonic solution 0

=L and for a nonmonotonic solution 0=−L�. As �v0,L�
�� /4, the inequality cos�2v0,L��0 always holds, meaning
that 0=sgn�cos �� and L=sgn�cos�hL−���. From the con-
ditions �18� we obtain the following results for the boundary
deformations,

cos�2v0� =� 1/m

1 + 2 cos2���
, �19a�

cos�2vL� =� 1/m

1 + 2 cos2�hL − ��
, �19b�

or, in terms of the variable 	, Eq. �16�,

sin 	0 =� 1/m

1 + 2 cos2���
, �20a�

sin 	L =� 1/m

1 + 2 cos2�hL − ��
. �20b�

From these considerations one can conclude that the
monotonic solution is realized for all �’s for hL=2k� �the
magnetic flux per junction equals an integer number of flux
quanta, �=k�0� and the nonmonotonic solution is realized
for hL= �2k+1�� �the magnetic flux equals a half-integer
number of flux quanta, �= �k+1/2��0�. If the magnetic flux
through one junction is not close to these special values, then
the solution changes from monotonic to nonmonotonic de-
pending on the lattice phase shift �. The location of different
types of solution depending on hL and � is illustrated in Fig.
2.

One can distinguish two important special cases corre-
sponding to symmetric locations of the lattice with respect to
the boundaries. The first case �=hL /2+�k, vL=−v0 corre-
sponds to the monotonic solution, and the second case �
=hL /2+� /2+�k, vL=v0 corresponds to the nonmonotonic
solution. The energy always has extremums at these values
of �. Moreover, a detailed study shows that the ground state
is always realized at one of these values of �. At large L the
system switches between these locations in the vicinity of the
points hL= �2k+1/2��, as is illustrated in Fig. 2. In the vi-
cinity of these switching points the energy has minima at
both values of �.

In general, conditions �19a� and �19b� are not sufficient to
determine the signs of the edge deformations v0 and vL. In
the limit of large L the deformation v�u� has to decay from
the edges leading to relations sgn�v0�=−0=−sgn�cos �� and
sgn�vL�=L=sgn�cos�hL−���. In this case we also obtain the
conditions

tan�2v0� = − 0
�m�2 cos2��� + 1� − 1,

tan�2vL� = L
�m�2 cos2�hL − �� + 1� − 1,

which fix the signs of v0 and vL. For large values of L /h the
monotonic solution typically changes sign inside. However,
for finite L there are intermediate regions located near the
lines �=� /2+�k and �=hL+� /2+�k where the solution is
still monotonic but does not change sign. We now proceed
with analyzing separately the monotonic and nonmonotonic
solutions.

A. Monotonic solution

The monotonic solutions are realized for ranges of �
where cos � cos�hL−���0 �gray regions in Fig. 2�. For
such a solution we obtain from Eq. �15� a relation connecting
the parameter m with the boundary deformations:



v0

vL dv
�1/m − cos2�2v�

= sgn�cos ���2L/h . �21�

Using the previously introduced variable 	, Eq. �16�, we can
rewrite Eq. �21� via elliptic integrals as

�m�F�	L,m� − F�	0,m�� = sgn�cos ���8L/h . �22�

This equation, together with boundary conditions �20a� and
�20b�, has to be solved to find the three unknown constants
	0, 	L, and m, which completely determine the solution. The
boundary deformations v0= �	0−� /2� /2 and vL= �	L

−� /2� /2 may have either the same sign or opposite signs. In
Appendix A we find the boundaries separating these two
types of solutions �boundaries between dark-gray regions
and light-gray regions in Fig. 2�.

The energy �12� and Josephson current �13� can be repre-
sented as

1

2

2

3

4

4

5

5

v(u)
1

0 Lu

0

α

hL=2πΦ/Φ0
2kπ (2k+1)π

3

FIG. 2. �Color online� Regions of different types of solution for
the smooth alternating deformation v�u� in the plane hL−� for
L /h�1. Typical solutions are illustrated for five marked points.
Dark gray color marks regions of monotonic solution changing sign
�3�, light gray color marks regions of monotonic solution not chang-
ing sign �2 and 4�, and white regions correspond to nonmonotonic
solution �1 and 5�. Light-gray regions shrink with increasing L. The
black line illustrates the location of the ground state.
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E = −
1

h
�cos�	0�cos��� − cos�	L�cos�hL − ���

+
1

�2mh
�E�	L,m� − E�	0,m�� −

L

mh2 , �23�

J��� =
1

h
�cos�	0�sin � − cos�	L�sin�− hL + ��� , �24�

where E�	 ,m���0
	�1−m sin2 xdx is an incomplete elliptic

integral of the second kind.24

B. Nonmonotonic solution

The solution is nonmonotonic in the regions given by
cos � cos�hL−���0 �white regions in Fig. 2�. In this case
the function v�u� has an extremum at some point u=um so
that we can rewrite Eq. �14� as

dv
du

= d
�2

�1/m − cos2�2v�
h

, for u � um,

dv
du

= − d
�2

�1/m − cos2�2v�
h

, for um � u � L ,

with d=sgn�cos ��. As dv /du=0 at u=um, we have m
=1/cos2�2vm��1 with vm�v�um�. Integrating the first equa-
tion from 0 to um and the second equation from L to um, we
obtain



v0

vm dv
�1/m − cos2�2v�

= d
�2um/h ,



vL

vm dv
�1/m − cos2�2v�

= d
�2�L − um�/h .

Adding these two equations, we obtain an equation connect-
ing vm with the boundary deformations v0 and vL:



v0

vm dv
�cos2�2vm� − cos2�2v�

+ 

vL

vm dv
�cos2�2vm� − cos2�2v�

= d
�2L/h . �25�

This equation, together with boundary conditions �19a� and
�19b�, represents the full system for determination of the
three unknown constants v0, vL, and m=1/cos2�2vm�. To re-
write these equations in terms of elliptic functions, we again
transfer to the variable �16�. Then Eq. �25� can be rewritten
as

�m�2F�	m,m� − F�	0,m� − F�	L,m�� = d

�8L

h
, �26�

with 	m=� /2+2vm. The boundary conditions in terms of 	0
and 	L are again given by Eqs. �20a� and �20b�. The elliptic
parameter is related to 	m as m=1/sin2	m, leading to the
relation F�	m ,m�=K�1/m� /�m. The energy for the non-
monotonic solution can be represented as

E = −
1

h
�cos 	0 cos��� − cos 	L cos�− hL + ���

+
1

�2mh
�2E�	m,m� − E�	0,m� − E�	L,m�� −

L

mh2 ,

�27�

and the Josephson current is again given by Eq. �24�. One
can easily check that the nonmonotonic solution matches the
monotonic solution at the boundaries. For example, for
cos �=0 the extremum is located at the boundary u=0.
In this case we have 
0=
m=arcsin�1/�m� �or �
−arcsin�1/�m�� and Eq. �26� coincides with Eq. �22�.

C. Alternative presentation of equations via elliptic integrals

Using the known relations for elliptic integrals,

F�	,m� =
1

�m
F��,1/m� with sin � = �m sin 	 , �28a�

E�	,m� =
1

�m
��1 − m�F��,1/m� + mE��,1/m�� , �28b�

valid for 	�� /2 and sin 	�1/�m, one can rewrite Eqs.
�22� and �20� for the case of the same-sign monotonic solu-
tion in the alternative form

F��L,m̃� − F��0,m̃� = sgn�cos ���8L/h , �29a�

sin �0 =
1

�1 + 2 cos2���
, �29b�

sin �L =
1

�1 + 2 cos2�hL − ��
, �29c�

with m̃�1/m. Correspondingly, the energy �23� in this rep-
resentation is given by

E = −
1

h
��1 − m̃ sin2 �0 cos � − �1 − m̃ sin2 �L cos�hL − ���

+
1

�2h
�E��0,m̃� − E��L,m̃�� −

�2 − m̃�L
h2 . �30�

In the case of the nonmonotonic solution, using relations
�28a� and �28b� for the elliptic integrals, one can rewrite Eq.
�26� in the equivalent form

2K�m̃� − F��0,m̃� − F��L,m̃� = d
�8L/h , �31�

where m̃�1/m and �0 and �L are given by Eqs. �29b� and
�29c� and represent the energy as

E = −
1

h
��1 − m̃ sin2 �0�cos �� + �1 − m̃ sin2 �L�cos�hL − ����

+
1

�2h
�2E�m̃� − E��0,m̃� − E��L,m̃�� −

�2 − m̃�L
h2 . �32�

This representation is especially useful in the case of large
m �small m̃�. In particular, it will allow us to study the tran-
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sition to the rectangular-lattice state corresponding to the
limit m→�, which we will consider in the next section.

IV. TRANSITION TO A RECTANGULAR LATTICE

An important particular case is the solution of Eq. �9�
corresponding to a rectangular lattice, v= ±� /4 or 	=0,�.
This case corresponds to the limit m→� �m̃→0�. The en-
ergy of the rectangular lattice coincides with the well-known
result for a single junction,

Erect��� = −
2

h
sin�hL

2
sin�� −

hL

2
 , �33�

and has a minimum Erect=−2�sin�hL /2�� /h at �=hL /2
+� /2 with =sgn�sin�hL /2��.

To find the condition for the transition to the rectangular
lattice, we take the limit m̃→0 in Eq. �31� for the nonmono-
tonic solution. Using the relations K�0�=� /2 and F�� ,0�
=�, we obtain

� − �0 − �L = �8L/h , �34�

where �0 and �L are given by Eqs. �29b� and �29c�. Using
these definitions, the condition for the rectangular lattice can
be rewritten in an explicit form as

�2��cos�hL − ��� + �cos ���
��1 + 2 cos2 ���1 + 2 cos2�hL − ���

� sin��8L

h
 .

�35�

This equation gives the transition criterion in the general
case, including the current-carrying states. In particular, the
rectangular lattice gives a local energy minimum at �
=hL /2+� /2 in the regions �hL /2�− �k+1/2���1/4 if the
inequality

�sin�hL/2�� � tan��2L/h�/�2 �36�

is satisfied. The rectangular lattice first appears in the ground
state at points hL= �k+1/2�2� for L /h� l1=arctan��2� /�2
�0.675. This value is marked in the right plot of Fig. 1.

V. WIDE-STACK–NARROW-STACK CROSSOVER

In this section we investigate in detail the crossover be-
tween the wide-stack and narrow-stack regimes. As this
crossover is driven by the reduced parameter h /L, for a junc-
tion with size L the crossover takes place with increasing
magnetic field at size-dependent field BL=L�0 / �2��2s3�.

At large L, L�h or B�BL, the smooth alternating defor-
mation has solutions in the form of two isolated surface
solitons.20 The monotonic solution corresponds to solitons of
the same sign and the nonmonotonic solution corresponds to
solitons of opposite signs, as is illustrated in Fig. 3. If one
neglects the interaction between the soliton, then the relative
sign of the surface soliton has no importance and the total
Josephson current is given by the sum of two independent
surface currents, which do not depend on the soliton signs.12

As a consequence, the product hJc has periodicity of half a
flux quantum per junction and reaches maxima at hL=�j

��= j�0 /2� with hJc�1.035. At finite L the interaction be-
tween the surface solitons disturbs such periodicity. At large
L one can derive analytically corrections to the infinite-L
results; see Appendix B for details. In particular, near the
maxima hL=�j ��= j�0 /2�, we find the finite-size correc-
tion

Jc�h,�j� � − 1.544
�− 1� j

h
exp�−

�8L

h
 . �37�

As we can see, the finite-size effects increase the critical
current maxima at �= �k+1/2��0 �j=2k+1� and reduce the
critical current maxima at �=k�0 �j=2k�. In the wide-stack
regime, however, these corrections are exponentially small,
which explains the nice �0 /2-periodic oscillation of the flux-
flow voltage observed in this regime.8,15

In the whole range of fields and sizes we explore the
phase diagram numerically. To find the ground state and the
critical current at a given h and L, we study the dependences
of the lattice structure, energy, and Josephson current on the
lattice phase shift �. First, we have to find the boundary
deformations 	0 and 	L and the elliptic parameter m using
the boundary conditions �20� together with either Eq. �22�
for cos � cos�hL−���0 or Eq. �26� for cos � cos�hL−��
�0. Using the values obtained, we compute the energy from
Eq. �23� or �27� and the current from Eq. �24�. This proce-
dure has been implemented in Mathematica. Figure 4 shows
representative � dependences of the energy and current for
L=4 and three values of flux per junction, � /�0=3.1, 3.25,
and 3.4, within one oscillation period. The minimum of the
energy with respect to � determines the ground state, and the
maximum of the current determines the critical current.

Figure 5 shows the field dependences of the critical cur-
rent for three different values of junction size L: 3, 4, and 6.
One can observe that with increasing field �0 /2-periodic os-

-0.4
-0.2
0.
0.2
0.4

1 2 3 4 5 6 7
-0.4
-0.2
0.
0.2
0.4

u

v
v

Φ=kΦ0

Φ=(k+1/2)Φ0

FIG. 3. �Color online� Typical lattice deformations at large L for
�=k�0 �upper plot� and �= �k+1/2��0 �lower plot�. In the former
case the surface partial solitons have the same sign and repel each
other while in the latter case they have the opposite signs and attract
each other. The insets in both plots illustrate the corresponding dis-
placement fields of the Josephson-vortex lattice in the two neigh-
boring junctions.
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cillations smoothly transform into �0-periodic oscillations.
This occurs via suppression of the peaks at �=k�0 and en-
hancement of the peaks at �= �k+1/2��0. Such behavior of

the critical current has been recently reproduced by numeri-
cal simulations by Irie and Oya.21 Experimentally, the cross-
over between �0 /2- and �0-periodic oscillations has been
observed in the flux-flow voltage by Kakeya et al.15 The
crossover field can be arbitrarily defined as a field at which a
k�0 peak in the product �Jc drops below the half of a �k
+1/2��0 peak. At larger L the crossover takes place at larger
field and larger � /�0 but it always occurs at the same ratio
h /L, h /L�1.6. The important property of the system, dis-
cussed in Sec. IV, is the transformation of the lattice into the
rectangular state at sufficiently large h /L. This property is
illustrated in Fig. 6 where the behavior of the critical current
is shown together with regions of stable rectangular lattice in
the field-current diagram for two sizes L=2.5 and 4.

Let us consider in more detail the behavior of the critical-
current maxima at �= �j /2��0. We start with the case of
half-integer flux quanta per junction, �= �k+1/2��0 �hL
= �2k+1���. In this case a nonmonotonic solution is realized
for all �. As for sufficiently high h /L the lattice transforms
into a rectangular state, it will be convenient to use the pre-
sentation given by Eqs. �29b�, �29c�, and �31�, which natu-
rally describes this transition. As follows from Eq. �34�, in
the range

cos � � tan��2L/h�/�2, �38�

the rectangular lattice is realized for which m̃=0 and the
energy and current are given by

E1��� = −
2

h
�cos �� , J1��� =

2

h
sin � sgn�cos �� .

In the opposite range cos �� tan��2L /h� /�2, the solution
has the form of a deformed lattice. In this case we have �0
=�L=arcsin�1/�1+2 cos2 �� �or �−arcsin�1/�1+2 cos2 ���
and Eq. �31� becomes

-1.0
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0.0
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1.0
-2.0
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-1.6
-1.4
-1.2
-1.0
-0.8
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hJ

α-hL/2

3.1

0 π/4 π/2 3π/4 π

3.25

3.4

hE

3.1

Φ = 3.1Φ0

Φ = 3.4Φ0

FIG. 4. �Color online� The representative dependences of the energy �upper left plot� and Josephson current �lower left plot� on parameter
� for L=4 and three values of flux per junction, � /�0=3.1, 3.25, and 3.4, within one oscillation period �the curves are marked by these
values� corresponding to the magnetic fields h=4.87, 5.105, and 5.34. The parameters correspond to the crossover region L /h�1. Dark gray
marks the region of the monotonic solution and light gray marks the region of the nonmonotonic solution. Arrows in the energy plot mark
values of � corresponding to the ground state. The pictures in the right column illustrate the structure of ground states at � /�0=3.1 and 3.4.
The lines show oscillating z-axis currents in neighboring layers, and ellipses mark centers of the Josephson vortices.
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2

0 2 4 6 8 10 12 14
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FIG. 5. �Color online� The field dependences of the critical cur-
rent for three different sizes L=3, 4, and 6. To emphasize the peri-
odic nature of the dependences, we plot the product �Jc �in units of
JJ�0 /2� where JJ is the total maximum Josephson current� vs
� /�0. One can observe the crossover from �0 /2-periodic oscilla-
tions to �0-periodic oscillations with increasing �. At larger L the
crossover takes place at larger � /�0. The dashed line in the L
=3�J plot shows the function 2�sin��� /�0�� corresponding to the
usual Fraunhofer dependence in small Josephson junctions. Top
axes show the parameter h /L �in real units h /L=B /BL with BL

=L�0 / �2��2s3��. The crossover always takes place at the same
value of the ratio h /L�1.6. In the plots for L=4�J and 6�J dotted
and dashed lines show the universal dependences of the product �
times current maxima at �= �k+1/2��0 ��Jmax,1� and �=k�0

��Jmax,2� on the parameter h /L.
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K�m̃� − F�arcsin� 1
�1 + 2 cos2 �

,m̃� =
�2L

h
. �39�

Solving this equation with respect to the elliptic parameter
m̃���, we can obtain the energy and current

E1��� = −
2

h
��1 −

m̃

1 + 2 cos2���
cos����

+
�2

h
�E�m̃� − E��0,m̃�� −

�2 − m�L
h2 , �40�

J1��� =
2

h
�1 −

m̃

1 + 2 cos2���
sin���sgn�cos���� . �41�

The critical current at �= �k+1/2��0 is given by Jmax,1

=max��J1����. At small L, L /h�1, the maximum critical
current is realized at the instability point of the rectangular
lattice cos����L /h, giving

Jmax,1 �
2

h
�1 −

L2

2h2 . �42�

It is always somewhat smaller than the “Fraunhofer” value
2/h.

It was obtained in Sec. IV that the rectangular lattice is
realized in the ground state ��=0� at points �= �k+1/2��0

for L /h� l1=0.675. If, however, L /h is only slightly smaller
than this value, the rectangular lattice becomes unstable with
increasing current and the configuration at the critical current
still corresponds to the deformed lattice. We found that there
is another typical value of the ratio L /h, L /h= l2�0.484,
below which the rectangular lattice remains stable up to the
critical current. Both typical values of h /L—1/ l1 and

1/ l2—are marked in Fig. 6. One can see in that for both stack
sizes shown, L=2.5 and 4, the rectangular lattice first ap-
pears around points �= �k+1/2��0 when h /L exceeds 1/ l1

and its stability range extends up to the critical current when
h /L exceeds 1/ l2.

For integer flux quanta �=k�0 �hL=2�k�, a changing-
sign monotonic solution is always realized, vL=−v0. In the
case cos ��0 this corresponds to 	0=�−	L=arcsin�m�1
+2 cos2�����−1/2 and Eq. �22� can be reduced to the form

�m�K�m� − F�
0,m�� = �2L/h . �43�

Solving this equation with respect to m, we can obtain the
energy from Eq. �23� and current from Eq. �24�:

E2 = −
2

h
cos 
0 cos � +

�2
�mh

�E�m� − E�
0,m�� −
L

mh2 ,

�44�

J2��� =
2

h
cos 
0 sin � . �45�

The critical current at �= �k+1/2��0 is given by Jmax,2

=max��J2����. At small L the inequality cos 
0�1 holds. In
this limit, using the relation F�
0 ,m��K�m�− �� /2−
0� /
�1−m, we can approximately rewrite Eq. �43� as � /2−
0
= ��2L /h��1−1/m. As sin 
0 is close to 1, Eq. �20a� gives
1/m�1+2 cos2��� and 
0=� /2− �2L /h�cos �. Therefore
we obtain for the �-dependent current �45�,

J2��� �
2L

h2 sin 2� . �46�

The maximum is realized at �=� /4, giving the following
result for the critical current:

Jmax,2 � 2L/h2; �47�

i.e., it decays at large h as 1/h2 but never drops to zero as for
the usual Fraunhofer dependence. The behavior in the
narrow-stack regime will be considered in more detail in the
next section. One can see that the critical currents at both
maxima Jmax,� ��=1,2� have the same scaling property: the
product hJmax,� depends only on the ratio L /h. These scaling
dependences are plotted in Fig. 5 in the plots for L=4 and 6.

VI. NARROW-STACK REGIME

Let us consider in more detail the narrow-stack regime at
L /h�1. In this regime the interaction with the boundaries is
typically stronger than the bulk shearing interaction. As a
consequence, the boundaries stabilize the rectangular lattice
configuration in most of the phase diagram. The exception is
the narrow regions in the vicinity of the integer-flux-quanta
points �=k�0 where the interaction with the boundaries
vanishes and the rectangular lattice loses its stability. The
rectangular lattice also becomes unstable near the critical
current. In this section we will study in detail this behavior.
Instead of using the asymptotic behavior of elliptic integrals,
it is more transparent to use as a starting point the equation

FIG. 6. �Color online� The field dependences of the critical cur-
rent �solid lines� for sizes L=2.5 and 4 for the same range of the
ratio h /L, h /L�3.5 shown on the top axes. Shaded areas show the
regions of the stable rectangular lattice. The rectangular-lattice re-
gions first appear in the vicinity of points �= �k+1/2��0 when h /L
exceeds 1/ l1�1.48. When h /L exceeds 1/ l2=2.07 the rectangular
lattice remains stable at these points up to the critical current.
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for smooth alternating deformation �9�, the boundary condi-
tions �10�, and the energy �12�. It will be more convenient to
use the variable 	 given by Eq. �16� �instead of v� from the
very beginning, because it vanishes in the rectangular-lattice
state. We also introduce a new variable for the lattice phase
shift,

� � � + �/2 − hL/2,

which will facilitate a more compact presentation of the re-
sults. In terms of the variables 	�u� and � the energy �12�
can be rewritten as

E��� � −
1

h
�cos 	0 sin�� +

hL

2
 − cos 	L sin�� −

hL

2
�

+ 

0

L

du�1

8
�d	

du
2

−
1 − cos�2	�

2h2 � . �48�

From this energy we obtain an equation for 	�u�,

d2	

du2 +
4

h2 sin�2	� = 0 �49�

and the boundary conditions

d	

du
�0� =

4

h
sin�	0�sin�� +

hL

2
 , �50a�

d	

du
�L� =

4

h
sin�	L�sin�� −

hL

2
 . �50b�

For small L, Eq. �49� can be solved as an expansion with
respect to the powers of u−L /2,

	 = 	a + a�u −
L

2
 −

2�u − L/2�2

h2 sin�2	a� , �51�

with 	a=	�L /2�. The boundary conditions �50� give two
equations for two unknown variables: the midpoint phase 	a
and the linear slope a. We obtain two types of solutions: �i�
the rectangular-lattice solution a=0, sin 	a=0 and �ii� the
deformed-lattice solution. In the leading order with respect to
the small parameter L /h, the latter solution can be repre-
sented as

a �
4

h
sin�	a�sin � cos�hL/2� , �52�

cos�	a� �
h

L

sin�hL/2�cos �

1 + 2 sin2 � cos2�hL/2�
. �53�

As follows from the last equation, the deformed-lattice solu-
tion does not exist if

h

L

�sin�hL/2�cos ��
1 + 2 sin2 � cos2�hL/2�

� 1. �54�

In this case the configuration must be the rectangular lattice.
The solution �53� also includes the case of the ideal triangu-
lar lattice 	a=� /2 which is always realized if either
sin�hL /2�=0 or cos �=0. As we consider the region L /h
�1, both triangular and deformed lattices exist only in the
vicinity of these points.

For analysis of lattices, it is also useful to derive the en-
ergy as a function of the average lattice shift � and the rela-
tive phase shift between the neighboring layers, 
a. For that
we substitute the expansion �51� up to linear order with the
phase gradient given by Eq. �52� into the energy �48� and
obtain

E�	a,�� � −
2

h
cos�	a�sin�hL

2
cos �

−
L

h2 sin2�	a��1 + 2 sin2 � cos2�hL

2
� .

�55�

In particular, the result �53� corresponds to the minimum of
this energy with respect to 	a when condition �54� is satis-
fied. We will see that this relatively simple energy function
of two variables, whose shape evolves with the magnetic
field, describes a surprisingly rich behavior in the vicinity of
the integer-flux-quanta points. The typical energy landscapes
for the cases of half-integer- and integer-flux-quanta per
junction are illustrated in Fig. 7.

Let us study the zero-current ground states first. We start
with a stability analysis of the rectangular lattice which is
realized at 	a=0,� and gives the ground state in most of the
phase space. In this case the energy is minimal with respect
to � either at �=0, for cos�	a�sin�hL /2��0, or at �=�, for
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FIG. 7. �Color online� Ex-
amples of the energy landscape
�55� as a function of the average
lattice shift � and the amplitude of
the alternating phase deformation

a for L=2 and � /�0=3.5 and 3.
For �=3.5�0 the equivalent min-
ima at �
a ,��= �0,�� and �� ,0�
correspond to the rectangular lat-
tice, while for �=3�0 the minima
at �
a ,��= �� /2 ,� /2� and �� /2 ,
3� /2� correspond to the triangular
lattice.
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cos�	a�sin�hL /2��0; see, e.g., left part of Fig. 7 where
sin�hL /2�=−1. Expanding the energy with respect to 	a near
the point 	a=0,

E�	a,0� � −
2

h
�sin�hL

2
� +

	a
2

h
��sin�hL

2
� −

L

h
� ,

we conclude that the rectangular lattice is stable if

�sin�hL

2
� �

L

h
, �56�

which coincides with condition �54� at �=0,�. In real vari-
ables condition �56� can be rewritten as

2��

�0
�sin���

�0
� � � L

�J
2

. �57�

Therefore even at small L /h the rectangular lattice is always
unstable near the integer-flux-quanta points, �=k�0. This is
easy to understand: near these points the interaction with the
boundaries vanishes and even a small shearing interaction
between neighboring planar Josephson-vortex arrays be-
comes sufficient to induce instability with respect to the al-
ternating deformations. Further analysis, however, will show
that this instability takes place when the rectangular lattice
does not give already the ground state, meaning that the sys-
tem actually experiences a first-order transition.

For the deformed-lattice solution �53� the energy at fixed
� is given by

E��� � −
1

L

sin2 hL

2
cos2 �

1 + 2 sin2 � cos2 hL

2

−
L

h2�1 + 2 sin2 � cos2 hL

2
 .

�58�

This energy always has extrema at �=0, �, and � /2. As
follows from Eq. �53�, the state at �=� /2 always corre-
sponds to the triangular lattice, 	a=� /2. We find now the
conditions that the energy reaches minima at these values of
�. Consider first the point �=0. Expanding the energy near
this point,

E��� � −
1

L
sin2 hL

2
−

L

h2 +
�2

L
�sin2 hL

2
�1 + 2 cos2 hL

2


−
2L2

h2 cos2 hL

2
� ,

we obtain that it corresponds to minimum if

tan2�hL

2
�1 + 2 cos2�hL

2
� �

2L2

h2 .

As L /h�1, this inequality is valid almost everywhere except
in the vicinity of the integer-flux-quantum points at which
sin�hL /2�→0 and cos2�hL /2�→1 where this condition can
be rewritten in an approximate simpler form

�sin�hL

2
� �

�2L
�3h

.

Comparing this condition with condition �56�, we can see
that the deformed lattice gives the energy minimum at �=0
only within the narrow region given by

�2

3
�

h

L
�sin�hL

2
� � 1. �59�

In this region the optimum value of 	a for �=0 is given by
cos�	a�= �h /L��sin�hL /2��.

To find if the triangular lattice at the point �=� /2 gives
the local energy minimum, we expand the energy �58� near
this point, �=� /2−�,

E��� � −
L

h2�1 + 2 cos2 hL

2


+ �2�−
1

L

sin2 hL

2

1 + 2 cos2 hL

2

+
2L

h2 cos2 hL

2 � .

We can see that the value �=� /2 corresponds to the energy
minimum if

tan2 hL

2

1 + 2 cos2 hL

2

�
2L2

h2

or, approximately, �sin�hL /2����6L /h. We can conclude
that near the integer-quanta points �=k�0 �hL=2k�� the
minimum location switches from �=0 to �=� /2. In the in-
termediate region given approximately as

�2

3
�

h

L
�sin�hL

2
� � �6, �60�

the energy has local minima at both points �=0 and � /2.
Moreover, in the region �h /L��sin�hL /2���1 the minimum at
�=0 is realized by the rectangular lattice. This behavior in-
dicates that switching between the rectangular and triangu-
lar lattices in the ground state occurs via a first-order phase
transition.

To find the transition point, we compare the triangular-
lattice energy

Etrian � E��

2
,
�

2
 = −

L

h2�1 + 2 cos2 hL

2


with the rectangular-lattice energy

Erect � E�0,0� = −
2

h
�sin�hL

2
�

and obtain that the triangular lattice has lower energy if
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�sin�hL

2
� �

L

2h
�1 + 2 cos2�hL

2
� .

As this only happens near the points where cos2�hL /2��1,
the equation for the transition points ht can again be rewrit-
ten in a simpler form

�sin�htL

2
� =

3

2

L

ht
�61�

or in real units, in terms of flux per junction,

2��t

�0
�sin���t

�0
� =

3

2
� L

�J
2

. �62�

Comparing Eq. �61� with the stability criterion of the rectan-
gular lattice �56�, we indeed can see that before the rectan-
gular lattice becomes unstable, it switches to the triangular
lattice via a first-order phase transition. From this equation
we can also obtain a small shift of the transition point with
respect to the integer-flux-quantum point �=k�0 as a func-
tion of the index k. Writing �t= �k+ f t,k��0, we compute

�f t,k� �
3

4�2k
� L

�J
2

� 1. �63�

The behavior discussed is illustrated in Fig. 8 in which the �
dependences of the energy and current are plotted for L=2
and several values of � above the point 3�0. The contour

plot of the energy at the transition point is also shown.
Let us investigate now current-carrying states and the be-

havior of the critical current. In the region given by Eq. �54�
the current in the rectangular-lattice state is

J��� =
2

h
�sin�hL

2
�sin � , �64�

where we assumed for definiteness that cos 	a sin�hL /2�
�0. If condition �54� is violated, then the deformed lattice is
realized. In this case, differentiating the energy �58� with
respect to �, we obtain the current in the deformed-lattice
state �including the triangular lattice�:

J��� =� sin2 hL

2
�1 + 2 cos2 hL

2


L�1 + 2 sin2 � cos2 hL

2
2 −

2L cos2 hL

2

h2 �sin 2� ,

�65�

for

h

L

�sin
hL

2
cos ��

1 + 2 sin2 � cos2 hL

2

� 1.

In particular, at hL=2�k this formula reproduces the results
�46� and �47� obtained from the elliptic-integral representa-
tion.

Consider first the region where the ground state is given
by the rectangular lattice. The maximum current in this state
would be achieved at �=� /2 but condition �54� always
breaks down before that. From this condition we compute
the value of � at which the rectangular lattice becomes un-
stable:

�cos �t�

=

2
L

h
�1 + 2 cos2 hL

2


�sin
hL

2
� +�sin2 hL

2
+

8L2

h2 cos2 hL

2
�1 + 2 cos2 hL

2
 .

�66�

In a wide range of parameters, away from the regions given
by Eq. �61�, the maximum current is achieved at this insta-
bility point:

Jc =
2

h
�sin�hL

2
�sin �t. �67�

In particular, in most of the parameter space, for
�tan�hL /2���L /h we obtain much simpler results

�cos �t� �
L

h

1 + 2 cos2 hL

2

�sin
hL

2
� , �68�
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FIG. 8. �Color online� The dependences of the energy �left� and
current �right� on the lattice phase shift � for L=2�J slightly above
the point �=3�0 �curves are marked by the values of � /�0�. One
can observe several features discussed in detail in the text. Close to
the point �=3�0 for ��3.1�0 the global energy has minimum at
�=� /2 corresponding to the triangular lattice �Eq. �63� actually
gives �t= �3+1/�2��0 for the transition point�. Above this point
the global minimum is given by the rectangular lattice at �=0.
Within the narrow range of � the energy has minima at both �
=0 and � /2. The rectangular lattice appears at the local minimum
at �=0 for ��3.08�0 but it becomes unstable with increasing �.
The instability points are seen as kinks in the J��� curves. In some
range of � the absolute value of the current has two local maxima
within 0���� /2. The critical current switches between these
maxima with increasing �. The inset shows the contour plot of
energy near the transition point, at �=3.1�0.
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Jc �
2

h
�sin�hL

2
��1 − �L

h
2�1 + 2 cos2 hL

2
2

2 sin2 hL

2
� . �69�

In this region the critical current is only slightly smaller than
the “Fraunhofer” result �2/h��sin�hL /2��. At the half-integer-
flux-quantum points hL= �2k+1�� these equations reproduce
the result �42� obtained from the elliptic-integral representa-
tion. The property that the rectangular lattice is always un-
stable at some lattice displacement � also has important dy-
namic consequences. It means that the lattice cannot main-
tain its static rectangular configuration when it starts to
move.

The critical current has a nontrivial behavior in the vicin-
ity of the points hL=2�k where �sin� hL

2
���1 and the general

formula �65� can be simplified as

J��� �
2L

h2 �1 −

3h2 sin2�hL

2


2L2�2 − cos 2��2�sin 2� .

This gives the critical current near hL=2�k,

Jc�h,L� �
2L

h2 �1 −

3h2 sin2�hL

2


2L2 � ,

for sin�hL /2��L /h. This result shows that the dependence

Jc��� for junction stacks always has local maxima at �
=k�0, in contrast to the Fraunhofer dependence for which
the critical current vanishes at these points. To find the
critical-current behavior in the whole field range in the re-
gion h /L�1, we numerically found the maximum of J���
with respect to � and different hL=2�� /�0 and L. Figure 9
illustrates the field dependence of the critical current and
current dependence of the lattice structure within one oscil-
lation period 2.5�0���3.5�0 for L=2�J. To visualize the
lattice structures, we represent the values of �cos 	a� by the
gray level. In most of the current-field diagram the rectangu-
lar lattice is realized shown by light gray ��cos 	a�=1�. The
triangular lattice shown by black ��cos 	a�=0� appears in the
ground state only in the vicinity of the point �=3�0. Ex-
actly at this point the lattice remains triangular up to the
critical current. Slightly away from this point the lattice de-
forms with increasing current. In the range of parameters
given by Eq. �60� the dependence �J���� has two maxima
within 0���� /2 �see left plot in Fig. 8�. As a conse-
quence, the field dependence of the critical current has kinks
related to switching between these maxima.

VII. SLOW DYNAMICS IN THE OVERDAMPED REGIME:
OSCILLATIONS OF THE FLUX-FLOW VOLTAGE

When the external current flowing across the layers ex-
ceeds the critical current, the lattice starts to move. In gen-
eral, dynamic behavior is quite complicated. A simple situa-
tion is realized only at slow lattice motion in the overdamped

3
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FIG. 9. �Color online� The main plot: the field dependence of the critical current for L=2�J within one oscillation period 2.5�0��
�3.5�0. The gray level codes the value of �cos 	a� with the light gray color in most of the plot corresponding to the rectangular lattice
�cos 	a�=1 and the black color near � /�0=3 corresponding to the triangular lattice �cos 	a�=0. The solid line shows the Fraunhofer
dependence sin��� /�0� / ��� /�0�. The inset above shows a blowup of the region near � /�0=3. Plots at the right side illustrate repre-
sentative dependences �J���� for three values of � marked by arrows. Dashed curves in these plots show corresponding dependences for
usual small junction. The kinks in the Jc��� curve at � /�0�3±0.085 occur due to the switching between different maxima in the �J����
dependence.
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case when the lattice deformations have time to adjust to the
current lattice position. In this case the lattice moves in the
periodic potential given by its static energy �12� and one can
use static results to predict the I-V dependences. On the other
hand, one can expect that the voltage oscillations are less
sensitive to inhomogeneities than the critical-current oscilla-
tions, because the homogeneously moving lattice smears
away disorder. The critical current is also smeared by ther-
mal fluctuations. These are possible reasons why it is easier
to observe and interpret the magnetic oscillations in the flux-
flow resistivity than in the critical current.8,15–17

In general, the dynamic behavior also depends on the
dissipation mechanism. In BSCCO in a wide range of
magnetic fields the flux-flow resistivity is mainly deter-
mined by the in-plane quasiparticle conductivity �ab.25 Only
when the magnetic field exceeds a typical value B�

=��ab /�c�0 / ��2��2s2� does the c-axis conductivity �c give
a dominating contribution to the flux-flow dissipation. In this
limit the flux-flow resistivity becomes field independent. In
BSCCO the field B� is typically several times larger than the
crossover field Bcr. An important feature of the in-plane dis-
sipation regime at B�B� is that the lattice velocity at fixed
applied current is very sensitive to the lattice structure; the
smallest velocity is realized for the triangular lattice and the
largest velocity is realized for the rectangular lattice. As the
lattice structure in the regime B�BL continuously changes
with lattice displacement, the dynamic behavior in this re-
gime is rather complicated. To avoid this complication, we
limit ourself here to a simple case of dominating c-axis dis-
sipation in the crossover region BL�B�. In this case the
viscous-friction coefficient weakly depends on the lattice
structure.

In the case of a structure-independent viscous-friction co-
efficient � f f, the time variation of the lattice phase shift obeys
the equation

� f f
d�

dt
+ J��� = Jext, �70�

where Jext is the external current, the current J���
�J�� ,hL ,h� is given by Eq. �13� �for brevity we again skip
in equations its dependence on the magnetic field and size�,
and the viscosity coefficient � f f is related to the flux-flow
resistance of the stack, Rff,

� f f =
N�0

2�cRf f
,

where N is the number of junctions in the stack. The voltage
drop per one junction U is related to d� /dt by the Josephson
relation

U =
�0

2�c

d�

dt
.

Solution of Eq. �70� is given by the implicit relation



0

� � f fd��

Jext − J����
= t ,

from which we obtain the average phase change rate

d�

dt
= � 1

�



0

� � f fd�

Jext − J����−1

and the flux-flow voltage

U

Uff
= � Jext

�



0

� d�

Jext − J����−1

, �71�

with Uff =Rff Jext being the bare flux-flow voltage without the
periodic potential. As the current J����J�� ,hL ,h� oscillates
with magnetic field, this flux-flow voltage will also experi-
ence similar field oscillations. In particular, when the exter-
nal current significantly exceeds the critical current, Jext
�Jc, we obtain a weak oscillating correction to the flux-flow
voltage, U=U−Uff,

U/Uff � − �J2����/Jext
2 , �72�

where �f������1/���0
�f���d� is the average with respect to

the lattice phase shift. As U� �J2����, the behavior of U is
overall similar to the behavior of the critical current but the
amplitude of voltage oscillations roughly scales as the criti-
cal current squared. Figure 10 shows the field dependences
of the average �J2����, which determines the amplitude of
weak voltage oscillations, for three junction sizes L=3, 4,
and 6.

Consider in more detail the behavior of U at the points
�= �j /2��0. To find the amplitude of the small voltage cor-
rection, Umax,1, at the half-integer-flux-quantum points, �
= �k+1/2��0, we have to find the � average of J1

2��� where
the current J1��� is given by Eq. �41� with the parameter m̃
given by Eq. �39�. Similarly, the amplitude of the voltage
oscillation at the points �=k�0, which we denote as Umax,2,
is determined by �J2

2���� where the current J2��� is given by
Eq. �45� with the parameter m given by Eq. �43�. Figure 11
shows the computed field dependence of the ratio
Umax,2 /Umax,1 together with the ratio �Jmax,2 /Jmax,1�2. In
practice, to extract the ratio Umax,2 /Umax,1 from the experi-
mental voltage-field dependence, one should plot smooth
curves via local maxima and two sets of local minima as is
illustrated in the inset of Fig. 11, subtract the two minima
curves from the maxima curve, and compute the ratio of the
differences. One can see that the field dependences of
Umax,2 /Umax,1 and �Jmax,2 /Jmax,1�2 are almost identical.
This plot gives a possibility for accurate determination of the
anisotropy factor from the voltage oscillations using the field
scale. In particular, the ratio U2 /U1 drops to 0.5 at the
field B1/2=1.302BL=1.302�0L / �2��2s3� �see Fig. 11�,
meaning that � can be extracted from this field as

� � 330� L��m�
B1/2�T�

, �73�

where we used the BSCCO interlayer spacing s�1.56 nm.
For example, using the data reported in Ref. 15 for the
sample H55 with L=5.5 �m, we estimate B1/2�3.6 T, giv-
ing a very reasonable estimate ��408. This estimate is sig-
nificantly larger than the value ��110 obtained by the au-
thors themselves, and the difference comes from the value of
the numerical constant in the crossover field.
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We have to mention that an alternative mechanism of
�0 /2-periodic voltage oscillations at fixed current exists at
high lattice velocities due to switching between the Fiske
steps.26 However, experimentally, the most regular voltage
oscillations are observed at voltages much smaller than the
first Fiske voltage.8,15–17

VIII. SUMMARY

In summary, we studied magnetic oscillations of the criti-
cal current and lattice configurations in stacks of intrinsic
Josephson junctions, which are realized in mesas fabricated
from layered high-temperature superconductors. Depending
on the stack lateral size, oscillations may have either the
period of half a flux quantum per junction �wide-stack re-
gime� or one flux quantum per junction �narrow-stack re-

gime�. We studied in detail the crossover between these two
regimes. The typical size separating the regimes is propor-
tional to the magnetic field, meaning that the crossover can
be driven by the magnetic field. In the narrow-stack regime
the lattice structure experiences periodic series of first-order
phase transitions between aligned rectangular configurations
and triangular configurations. The triangular configurations
in this regime are realized only in narrow regions near
magnetic-field values corresponding to an integer number of
flux quanta per junction. For slow lattice motion a similar
crossover can also be observed in the oscillations of the flux-
flow resistivity. A quantitative study of the crossover allows
for a very accurate evaluation of the anisotropy factor.
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APPENDIX A: REGIONS OF MONOTONIC SAME-SIGN
SOLUTIONS FOR v„u…

One can distinguish two types of monotonic solutions de-
pending on whether or not the smooth phase v�u�= (	�u�
−� /2) /2 changes sign inside the junction �see Fig. 2�. For
the changing-sign solution the condition 0�m�1 always
holds. In this appendix we find the boundary values of �
separating these two types of monotonic solutions. For defi-
niteness, we consider the region 2k��hL� �2k+1�� and
−� /2+hL−2k����� /2 �gray area in the lower part of
the phase diagram in Fig. 2�. For the monotonic changing-
sign solution in this range we have 0�	0�� /2, � /2�
L
��—i.e.,

	0 = arcsin� 1/m

1 + 2 cos2���
,

FIG. 10. �Color online� The
representative field dependences
of the mean-squared average of
the current, �J2����, with respect
to the lattice displacements which
determine the amplitude of rela-
tive voltage oscillations U /Uff at
slow velocities via Eq. �72�.
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FIG. 11. �Color online� The field dependence of the ratio of
voltage-oscillation maxima at integer-flux-quantum points �Umax,2�
and at half-integer-flux-quantum points �Umax,1�. The inset illus-
trates definitions of Umax,1 and Umax,2 in the schematic voltage-
field dependence. For comparison we also show the plot of the ratio
of the critical-current maxima squared, �Jmax,2 /Jmax,1�2. Extraction
of the typical field B1/2 from the analysis of the voltage oscillations
allows an accurate evaluation of the anisotropy factor � using
Eq. �73�.
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	L = � − arcsin� 1/m

1 + 2 cos2�hL − ��
.

There are two boundaries in the region: one corresponding to
the condition 
0=� /2 �v0=0� below �=� /2 and another
corresponding to 
L=� /2 �vL=0� above �=−� /2+hL
−2k� �see Fig. 2�. For the first boundary �0�h ,L�, from Eqs.
�20a� and �22� we obtain

�m0�K�m0� − F�arcsin� 1/m0

1 + 2 cos2�hL − �0�
,m0� =

�8L

h
,

�A1a�

m0 =
1

1 + 2 cos2��0�
, �A1b�

where K�m�=F�� /2 ,m� is a complete elliptic integral of the
first kind24 and we used the identity F��−� ,m�−K�m�
=K�m�−F�� ,m�. Analyzing a similar equation for the sec-
ond boundary �L�h ,L�, we find that it is related to �0�h ,L� as
�L�h ,L�=hL−2k�−�0�h ,L�. One can check that �0�h ,L�
→� /2 for hL→2k� , �2k+1�� and for L→�; i.e., the re-
gion of the same-sign monotonic solution vanishes in these
limits.

APPENDIX B: WEAK FINITE-SIZE EFFECTS
AT LARGE L

In this appendix we derive finite-size corrections to the
critical current due to interaction between the surface soli-
tons. Consider for definiteness the case of monotonic solu-
tion. The nonmonotonic solution can be treated similarly. In
the limit L /h�1 the parameter m in Eq. �21� is close to 1.
Separating the small correction m=1−� /2 with ��1, we
evaluate the integral as



v0

vL dv
�1 + �/2 − cos2�2v�

�
1

2
ln�−

32

�
tan v0 tan vL .

This gives the following result for �:

� � − 32 tan v0 tan vL exp�− �8L/h� , �B1�

corresponding to the elliptic-function parameter m�1
+16 tan v0 tan vL exp�−�8L /h�. The boundary conditions can
be represented as

cos�2v0� �
1 + �/4

�1 + 2 cos2���
,

cos�2vL� �
1 + �/4

�1 + 2 cos2�hL − ��
.

One can neglect the shift of � due to the finite-size correc-
tions to v0 and vL. Without an interaction between edge de-
formations, the energy can be written as12

E0 =
1

h
sin�2v00�cos��� −

1

h
sin�2vL0�cos�hL − ��

+
1

h



v00

vL0

dv�1 − cos�4v� − L
2

2h2

=
1

h�2
�2 − �2 + cos 2� − �2 + cos 2�� − hL�� −

L

h2 ,

where v00 and vL0 are the surface deformations neglecting
finite-size corrections,

tan v00 =
1 − �1 + 2 cos2 �

�2 cos �
,

tan vL0 = −
1 − �1 + 2 cos2�� − hL�

�2 cos�� − hL�
.

The finite-size correction to the energy change can now be
estimated as

E =
1

h



v00

vL0

dv��1 + � − cos�4v� − �1 − cos�4v�� −
L�

2h2

�
�

h�32
.

Therefore, the total energy can be written as

E��,h,hL�

= −
L

h2 +
1

�2h
�2 − �2 + cos�2�� − �2 + cos�2�� − hL���

+
8�2

h

cos���cos�� − hL�exp�− �8L/h�
�1 + �2 + cos�2����1 + �2 + cos�2�� − hL���

.

�B2�

The last correction term describes the exponentially small
interaction energy between the surface solitons. It is impor-
tant to note that the finite-size correction breaks � periodicity
with respect to the parameter hL, meaning that the states
with �=k�0 and �= �k+1/2��0 are not equivalent any-
more.

For the Josephson current we obtain

J��,h,hL� =
1

�2h
� sin 2�

�2 + cos 2�
+

sin 2�� − hL�
�2 + cos 2�� − hL�


+

8�2

h
exp�−

�8L

h
 �

��

�� cos � cos�� − hL�
�1 + �2 + cos 2���1 + �2 + cos 2�� − hL��

�.

Assuming that without the finite-size correction the maxi-
mum current flows at �=�m�hL�, we obtain for the finite-
size correction to the critical current
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Jc�h,hL� =
8�2

h
exp�−

�8L

h
 �

��
� cos � cos�� − hL�

�1 + �2 + cos�2����1 + �2 + cos�2�� − hL���
�

�=�m�hL�
.

In particular, near the maxima hL=�j ��= j�0 /2�, using the result12 �m�0�=0.921, we obtain the result �37�.
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