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We consider the structure of a thermal phase-slip center for a simple microscopic model of a clean one-
dimensional superconductor in which superconductivity occurs only within one conducting channel or
several identical channels. Surprisingly, the Eilenberger equations describing the saddle-point configu-
ration allow for an exact analytical solution in the whole temperature and current range. This solution
allows us to derive a closed expression for the free-energy barrier, which we use to compute its
temperature and current dependences.
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Recent advance in fabrication techniques have brought
ultrathin superconductor wires into active experimental
investigation (for example, [1–4]), as they may play an
important role in future electronics. These studies brought
about the fundamental question of the limits at which thin
wires retain a key property of superconductors: the ability
to carry currents without dissipation. It was well estab-
lished that in extremely narrow superconductors thermal
fluctuations can occasionally drive a small part of the wire
into a normal state. When there is only one channel for a
supercurrent to pass, these fluctuations interrupt its flow
and cause a finite effective resistance. This phenomenon
has been understood by Langer and Ambegaokar (LA) as
thermally activated phase slips [5]: local abrupt switches of
the system between its metastable states in which the event
phase jumps discontinuously by�2�; see also Ref. [6] for
a review. The corresponding resistance exhibits Arrhenius
law temperature behavior, � / exp���F=T�, where �F is
the energy barrier separating these states. In a phase-slip
event the order parameter goes through the saddle-point
configuration in which it changes sign as a function of the
coordinate and vanishes at one point. The barrier for the
phase slip, �F, is given by the energy of this saddle-point
configuration. Later, a preexponential factor in resistivity
has been calculated by McCumber and Halperin [7] and
Langer-Ambegoakar-McCumber-Halperin (LAMH) the-
ory has been confirmed experimentally on tin whiskers
[8]. The dynamical theory of phase slips at large currents
has been further extended in Refs. [9,10].

The mechanism of appearance of a finite resistivity in a
thin wire can be described as follows [6]. A finite voltage
drop across the wire means that the order parameter phase
difference �12 between the ends of the wire has to increase
linearly with time. At first glance, this should inevitably
lead to a continuous increase of the supercurrent flowing
through the wire, which is obviously inconsistent with the
steady state. The resolution of this apparent inconsistency
is that the current relaxes via the phase-slip events, in
which the order parameter vanishes at some point in the
superconductor, allowing a phase difference between op-

posite sides of this point to change by 2�. As a result of this
event, a phase jump equal to 2� appears at one point of the
superconductor reducing the phase gradient in the rest of
the wire. To maintain a steady state, such events must occur
with the average frequency 2ehVi=@.

Phase-slip events can be caused also by quantum tun-
neling, which at sufficiently low temperatures can prevail
over the thermal activation, and this possibility is being
widely searched and debated [1–4,11]. Yet, the role and the
very fact of observation of quantum phase slips remain a
controversy. It seems now plausible that thermally acti-
vated phase slips may dominate down to very low tem-
peratures and that quantum fluctuations do not add any
significant corrections to the resistance in almost the whole
experimentally accessible temperature range. As original
LAMH theory [5,7] was developed within the framework
of the Ginzburg-Landau (GL) approach, it holds, strictly
speaking, only in the temperature interval near the critical
temperature, Tc, of the superconductor transition. On the
other hand, in sufficiently narrow wires a finite thermally
activated resistivity can be observed down to temperatures
which are significantly lower than Tc, There is thus an
experimental quest for extension of the LAMH theory to
low temperatures, where the phase slips have to be ana-
lyzed within the microscopic theory.

In this Letter we investigate a simple model of a clean
one-dimensional superconductor containing either only
one conducting channel or a few degenerate channels. It
turns out that this model allows for full analytical treatment
of a free-energy saddle-point configuration. An exact ana-
lytical solution of the Eilenberger equation is found, both
at zero and finite supercurrent. This solution allows us to
derive a closed expression for the temperature and current
dependent free-energy barrier.

We consider the simplest case of a narrow clean super-
conducting wire containing either only one superconduct-
ing channel or several degenerate channels, i.e., with the
same Fermi velocity, vF. The wire diameter is assumed to
be smaller than the London penetration depth; one can thus
neglect the magnetic field generated by the currents. We
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will find an order parameter configuration which corre-
sponds to the free-energy saddle point in such a wire. As
the saddle-point configuration is a stationary point in the
parameter space, it is described by the same equations as
the equilibrium state. In the quasiclassical approximation,
such a superconducting wire is described by the gap pa-
rameter ��x� and the Green’s functions, g, f, fy depending
on the coordinate along the wire x, the Matsubara frequen-
cies !n � 2�T�n� 1=2�, and the location on the Fermi
surface, which is reduced to two points corresponding to
forward and back motion. The Green’s functions are con-
nected by the normalization condition g2 � ffy � 1 and
obey the one-dimensional Eilenberger equations [12]:
 

vF
@g
@x
� �fy ���f � 0; (1a)

�vF
@f
@x
� 2!nf� 2�g � 0; (1b)

vF
@fy

@x
� 2!nf

y � 2��g � 0; (1c)

with vF � �jvFj. It is convenient to introduce new di-
mensionless variables

 x! x=�; �! �=Tc; T ! T=Tc;

where � � vF=Tc is the coherence length and Tc is the
critical temperature. In new variables the Eilenberger equa-
tions for the forward direction, vF > 0, become
 

@g
@x
� �fy ���f � 0; (2a)

�
@f
@x
� 2!nf� 2�g � 0; (2b)

@fy

@x
� 2!nf

y � 2��g � 0: (2c)

These equations must be completed with the self-
consistency equation,

 

��x�
�
� �T

X
!n

hf�!n; x; k̂F�iF; (3)

and the formula for the supercurrent,

 j � �2�ieN�0�T
X
!n

hvFg�!n; x; k̂F�iF; (4)

where N�0� � 1=��vF� is the density of states. The sum-
mation is going over all Matsubara frequencies n �
�1 . . .1. For the one-dimensional problem averaging
over the Fermi surface, h. . .iF, reduces to summation over
two points
 

hf�!n; x; k̂F�iF �
1

2
�f�!n; x; kF� � f�!n; x;�kF�	;

hvFg�!n; x; k̂F�iF �
vF
2
�g�!n; x; kF� � g�!n; x;�kF�	:

The Green’s functions in the opposite directions are con-

nected by relations f��kF� � �f
y�kF�	

�, fy��kF� �
�f�kF�	

�, and g��kF� � �g�kF�	�.
Let a finite current flow through the wire. Then the order

parameter, �, and the anomalous Green’s functions f and
fy can be represented in the form of plane waves with
slowly varying in space amplitudes, �, f / eikx; ��, fy /
e�ikx, where the wave vector k is determined by the super-
current. Defining new variables f� � �f� fy�=2, one re-
writes Eqs. (2a)–(2c) as
 

@g
@x
� 2i�If� � 2�Rf� � 0; (5a)

@f�
@x
� 2�Rg� 2!0nf� � 0; (5b)

@f�
@x
� 2i�Ig� 2!0nf� � 0; (5c)

with �R � Re�, �I � Im�, and !0n � !n � ik=2. Using
relations between the Green’s functions for the opposite
directions, we can rewrite the self-consistency condition
(3) separately for the real and imaginary parts of � as
 

�R�x�
�
� �T

X
!n

Ref��!n; x�; (6a)

�I�x�
�
� �T

X
!n

Imf��!n; x�: (6b)

Homogeneous solution for superconductor in equilibrium
is well known,

 f�0�� � Sn�R0; f�0�� � iSn�I; g�0� � Sn!
0
n (7)

with

 Sn � 1=
�������������������������
!02n � j�0j

2
q

: (8)

The absolute value of the equilibrium order parameter and
supercurrent can be found from Eqs. (3) and (4) as

 �T
X
!n

�
Re

1�������������������������
!02n � j�0j

2
p �

1

j!nj

�
� lnT; (9)

 j � �2eT
X
!n

Im
!0n�������������������������

!02n � j�0j
2

p : (10)

Note that the depairing action of superfluid velocity in our
model is equivalent to the depairing due to the Zeeman
splitting; see, e.g., Ref. [13]. As a consequence, in our
system the temperature dependence of the critical current
is nonmonotonic, similar to the Zeeman-effect upper criti-
cal field. Such temperature dependence is a peculiar prop-
erty of clean one-dimensional superconductors and it is
very different from higher dimensional systems.

We will demonstrate now that Eqs. (5) and (6) allow for
an exact analytical solution. First, from Eqs. (5) we obtain
a useful relation between the Green’s functions

 i�I
@f�
@x
� �R

@f�
@x
�!0n

@g
@x
� 0: (11)
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In general, we cannot reduce this relation to the first
integral of Eqs. (5a)–(5c). To proceed, we make some
strong assumptions about the form of the order parameter
and Green’s functions. We will check consistency of these
assumptions from the obtained solution. Namely, we as-
sume that (i) the imaginary part of the order parameter �I
is coordinate independent and (ii) f� can be found in the
variable-separated form

 f��!n; x� � Sn�R�x�; (12)

where the frequency term Sn is assumed to be coordinate
independent and therefore it has to be given by Eq. (8). In
this case we can rewrite Eq. (11) as a first integral,

 

@
@x

�
i�If� � Sn

�2
R

2
�!0ng

�
� 0;

which gives i�If� � Sn
�2
R

2 �!
0
ng � C. The constant C

can be found using asymptotics far away from the phase-
slip center. Substituting for Green’s functions their equi-
librium values from Eq. (7), we obtain C � �Sn�!

02
n �

�2
I � �2

R0=2�, which gives

 i�If� �!
0
ng � �Sn

�
!02n ��2

I �
�2
R0 � �2

R

2

�
: (13)

Taking derivative of Eq. (5c) and excluding @g=@x and
@f�=@x from Eqs. (5a) and (5b), we obtain

 

@2f�
@x2

� 4��2
I �!

02
n �f� � 4�R�i�If� �!

0
ng� � 0:

(14)

Substituting for f� the presentation (12) and using the
relation (13), we see that the frequency part indeed drops
out and this equation reduces to the differential equation
for �R,

 

@2�R

@x2
� 2�2

R0�R � 2�3
R � 0; (15)

which essentially coincides with the Ginzburg-Landau
equation. However, in our case it describes the phase-slip
center in the whole temperature range. This equation has a
kink solitonlike solution

 �R�x� � �R0 tanh��R0x�: (16)

Corresponding Green’s functions are
 

f� � Sn�R0 tanh��R0x�; (17a)

f� � Sn

�
i�I �

�2
R0

2�!0n � i�I�

1

cosh2��R0x�

�
; (17b)

g � Sn

�
!0n �

�2
R0

2�!0n � i�I�

1

cosh2��R0x�

�
: (17c)

One can verify that the normalization constraint g2 �
f2
� � f

2
� � 1 is satisfied. The assumed coordinate inde-

pendence of the imaginary part of � requires that the
coordinate-dependent part of Eq. (6b) vanishes. This gives

the following equation

 

X
!n

Im
�

1

!0n � i�I

1�������������������������
!02n � j�0j

2
p �

� 0; (18)

which can be used to find �I, while j�0j is determined by

Eq. (9) and �R0 �
�����������������������
j�0j

2 � �2
I

q
. Therefore, the structure

of the phase-slip center is fully defined.
The probability of a phase-slip event driven by thermal

fluctuation is proportional to the exponent exp���F=T�,
where �F is the free-energy barrier between homogeneous
and saddle-point state and T is the temperature. Therefore,
the next point is to find the free-energy barrier.

The formula expressing the free-energy in terms of the
quasiclassical Green’s functions has been derived by
Eilenberger in his original paper [12]. This formula can
be straightforwardly generalized to the one-dimensional
case and in real units it can be written as

 F � N�0�
Z
dx
�
j�j2

�
� �T

X
!n

�
vFg

2

�
@xf
f
�
@xfy

fy

�

� �fy � ��f� 2!n�g� 1�
�
F

�
: (19)

The phase-slip barrier is given by the energy difference
between homogeneous and inhomogeneous states, �F �
F� Fhom, and the free-energy density of a homogeneous
state is known to be

 F hom � j�j
2=�� �T

X
!n

�
����������������������
!2
n � j�j

2
q

� j!nj�: (20)

Using the Eilenberger equations and constraint g2 �
ffy � 1, we can simplify the expression for free-energy
(19) and rewrite it without space derivatives. With the self-
consistency equation we can get rid of the coupling con-
stant �. Subtracting the homogeneous-state free-energy
from the full expression and using dimensionless units,
we obtain the free-energy in units of Tc,

 �F �
Z
�Fdx (21)

with
 

�F � ��1�j�j2 � j�0j
2� lnT

� TRe
X
!n

�
j�j2 � j�0j

2

j!nj
�

�
�

f
�

��

fy
�

2

Sn

��
: (22)

Using our saddle-point solution (16) and (17) and perform-
ing integration over x, we obtain for �F,
 

�F � TRe
X
!n

�
ln
j�0j

2 � i�I!
0
n ��R0

�������������������������
!02n � j�0j

2
p

j�0j
2 � i�I!0n ��R0

�������������������������
!02n � j�0j

2
p

�
2�R0�������������������������

!02n � j�0j
2

p �
: (23)

This formula gives the barrier in terms of the sum over
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Matsubara frequencies, which allows for analytical calcu-
lation in the limits T ! 0, 1 and can be easily computed
numerically in general case.

At zero-temperature the sum over Matsubara frequen-
cies in (23) becomes an integral T

P
!n
!

R
d!=2�. At

T ! 0 the gap parameter j�0j is given by the BCS value,
��0� � ��=��Tc with � � 1:7811 and in our clean case it
remains current-independent up to the critical current cor-
responding to k 
 0:83. Equation (9) gives �I ! �k=2 for
T ! 0. Integration over! in Eq. (23) can be evaluated and
leads to a very simple exact result for the zero-temperature
barrier

 �F�0; k� �
2

�
�R0 �

2

�
��0�

�������������������
1�

�
k
2

�
2

s
(24)

for k < 0:83.
We also can find the asymptotics of the barrier in the

Ginzburg-Landau region, jT � Tcj � 1, where our results
have to be similar to the LAMH solution. In this tempera-
ture range �� 1 and we can take into account only the
first nonvanishing term of the Taylor expansion of Eq. (23).
In this limit for a wire without current we have

 �F � C0��0��1� T�3=2; (25)

where C0 �
8
��
2
p

3
��������
7��3�
p �

� 
 0:737 with ��z� �
P
1
n�1 n

�z as

the Riemann �-function, ��3� 
 1:202.
For arbitrary temperatures and currents the free-energy

barrier cannot be represented in a simple form and has be
computed numerically. Figure 1 shows the temperature
dependences of the barrier in units of ��0� for different
dimensionless currents in units of j0 � 2eTc. We also
show in the inset the current dependences of �F at several

temperatures. One can see that the temperature depen-
dences of the barrier have almost linear part at T ! 0.
This is a consequence of the superconducting gap vanish-
ing at one point. It is well known that in fully gapped
superconductors the temperature dependences of all pa-
rameters are exponential. Accidently, the Ginzburg-
Landau asymptotics (25) actually provides a reasonable
approximation for the exact barrier in the whole tempera-
ture range. Even at T ! 0 the GL result exceeds the exact
one only by 15%.

Our results can be straightforwardly generalized for a
case of several identical conducting channels. If we haveM
channels with the same Fermi velocity, then the corre-
sponding free-energy barrier is just proportional to the
number of channels, �FM � M�F. The current scale in
Fig. 1 also scales with the number of channels, j0 ! jM �
2MeTc. It is clear that the thicker the wire is and the more
conducting channels it has, the higher the free-energy
barrier is.

In conclusion, we considered the model of thermally
activated phase slips in a clean one-dimensional supercon-
ductor with only one conducting channel and found the
exact analytical solution of Eilenberger equations corre-
sponding to the free-energy saddle point. This solution
allowed us to calculate the temperature and current depen-
dences of the free-energy barrier for thermal phase slips.
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FIG. 1 (color online). The temperature dependences of the
phase-slip barrier in units of ��0� for different currents. The
legend indicates values of supercurrent measured in units of j0 �
2eTc. Note that at finite current the barrier always jumps to zero
from a finite value. Inset shows current dependences of the
barrier at different temperatures.
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