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Intrinsic Josephson-junction stacks realized in mesas fabricated out of high-temperature superconductors
may be used as sources of coherent electromagnetic radiation in the terahertz range. The major challenge is to
synchronize Josephson oscillations in all junctions in the stack to get significant radiation out of the crystal
edge parallel to the c axis. We suggest a simple way to solve this problem via artificially prepared lateral
modulation of the Josephson critical current identical in all junctions. In such a stack, phase oscillations excite
the in-phase Fiske mode when the Josephson frequency matches the Fiske-resonance frequency which is set by
the stack lateral size. The powerful, almost standing electromagnetic wave is excited inside the crystal in the
resonance. This wave is homogeneous across the layers, meaning that the oscillations are synchronized in all
junctions in the stack. We evaluate behavior of the I-V characteristics and radiated power near the resonance
for arbitrary modulation and find exact solutions for several special cases corresponding to symmetric and
asymmetric modulations of the critical current.
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I. INTRODUCTION

Josephson junctions are natural voltage-to-frequency con-
verters, since a finite voltage drop across the junction always
leads to oscillating current with frequency proportional to the
voltage �ac Josephson effect1�. This fundamental property
suggested an attractive possibility to use the ac Josephson
effect for developing voltage-tunable generators of electro-
magnetic waves. Radiation from a Josephson junction di-
rectly into the waveguide in the microwave frequency range
has been indeed detected a long time ago.2,3 However, the
typical detected radiated power �1 pW occurred to be too
small for practical applications.

A natural route to enhance this power is to use large ar-
rays of junctions. This possibility has been extensively ex-
plored by several experimental groups; see reviews.4,5 When
all junctions oscillate in phase, the total emitted power is
expected to be proportional to the square of the total number
of junctions in the array. Inevitable variations of junction
parameters, however, may cause variations of the oscillating
frequencies, leading to desynchronization and dramatic drop
in emission power. Therefore, the major challenge is to syn-
chronize oscillations in all junctions.4 One way to solve this
problem is to couple the junctions with a resonant cavity.
The efficient synchronization in such systems has been dem-
onstrated experimentally6 and has been extensively studied
in several simulation papers.7,8

Demonstration of intrinsic Josephson effect in high-
temperature superconductors9 opened a completely new
route to developing electromagnetic sources. Layered high-
temperature superconducting materials, such as
Bi2Sr2CaCu2O8 �BSCCO�, are composed of superconducting
CuO2 layers coupled by Josephson interaction. Intrinsic Jo-
sephson effect has been extensively investigated in the past
decade and most “classical” ac and dc Josephson phenomena

have been observed, including Fraunhofer magnetic oscilla-
tions of critical current in small-size samples,10 Josephson
plasma resonance,11,12 Shapiro steps in current-voltage char-
acteristics induced by external microwave irradiation,13,14

Fiske resonances,15–17 etc. Therefore, a small-size mesa fab-
ricated out of this material represents a natural one-
dimensional array of Josephson junctions. A large value of
superconducting gap, up to 60 meV, permits to bring the
Josephson frequency into the practically important terahertz
range. Due to atomic nature of the intrinsic junctions, it is
much easier to prepare large arrays of virtually identical
junctions than in artificially fabricated arrays. Nevertheless,
the same challenge to synchronize oscillations in all junc-
tions also remains for this system.

Electromagnetic waves propagate inside large-size lay-
ered superconductor in the form of plasma modes. In zero
magnetic field, the minimum frequency of these waves cor-
responding to homogeneous oscillations is given by the Jo-
sephson plasma frequency. The in-plane velocity of the mode
strongly depends on the c-axis wave vector, qz. The highest
velocity corresponds to the in-phase mode, qz=0, and the
lowest velocity corresponds to the antiphase mode, qz=� /s.

A stack of the intrinsic Josephson junctions with lateral
size smaller than the decay length of electromagnetic wave
behaves as a cavity. It is characterized by a spectrum of Fiske
resonant modes corresponding to excitation of almost stand-
ing electromagnetic waves.18 Frequencies of these modes
strongly depend on the wave vector perpendicular to the
layer direction, with the maximum frequency corresponding
to the homogeneous in-phase mode in all junctions and the
minimum frequency corresponding to the antiphase mode. At
the stack edge, the electromagnetic waves excited inside the
intrinsic junctions are converted into electromagnetic waves
propagating into dielectric media outside the crystal. To use
the stack as a coherent source of such radiation, it would be
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desirable to excite the in-phase resonance mode. Then the
radiation power is proportional to the square of the total
number of junctions positioned at distances smaller than the
wavelength of radiation. However, to synchronize the intrin-
sic junctions, one needs to have strong enough coupling be-
tween them. In the simplest case of a homogeneous stack at
zero magnetic field, the Josephson oscillations typically in-
teract very weakly inside the crystal.

A very popular way to achieve coherent Josephson oscil-
lations in the whole stack is to apply magnetic field along the
layers. The magnetic field promotes strong inductive interac-
tion between the neighboring junctions. Large magnetic field
generates a dense Josephson vortex �JV� lattice homoge-
neously filling all junctions. In the case of large-size system,
interaction between the static JV arrays in neighboring junc-
tions leads to formation of the triangular lattice correspond-
ing to the � phase shift between the phases in the neighbor-
ing junctions. The Fiske resonances excited by the moving
JV lattice have been observed experimentally.15–17 Due to its
triangular ground state, the JV lattice typically excites the
antiphase modes. Only a very weak outside radiation at
double Josephson frequency is expected in this case.19

To achieve a powerful emission, it would be desirable to
prepare aligned rectangular arrangement of JVs. Such con-
figuration is expected at certain conditions in small-size me-
sas due to interaction with edges. At small lattice velocities,
transition from triangular to rectangular configuration with
increasing magnetic field has been observed experimentally
as a crossover from �0 /2- to �0-periodic magnetic oscilla-
tions of the flux-flow voltage.20 The transitions between
static configurations have been studied theoretically in Ref.
21. The possibility to have the aligned configuration at large
velocities is an open issue. Recent large-scale numerical
simulations22 suggest that excitation of the resonance in-
phase mode and interaction via the radiation electromagnetic
field may promote alignment of JVs.

A possibility to use a mesa with small lateral size and a
very large number of junctions �about 104� in zero magnetic
field as a source of terahertz radiation has been proposed in
Ref. 23. In such a design, oscillations in different junctions
are synchronized by the external electromagnetic radiation
field generated by the oscillations themselves. Small lateral
size increases the strength of interaction due to the radiation
field and allows to avoid excessive heating. Such a source is
frequency tunable, with the maximum power conversion ef-
ficiency about 30%. The obvious technological challenge of
this design is a requirement to fabricate a mesa with such a
large number of almost identical junctions.

In this paper, we explore a different way to excite reso-
nance mode and synchronize oscillations in a junction stack.
We propose to use a stack with strongly modulated Joseph-
son critical current �JCC�, with modulation identical in all
junctions. Such a modulation dramatically enhances coupling
between the Josephson oscillations and the in-phase reso-
nance modes. For a single junction, such a mechanism of
excitation of the Fiske resonances has been considered in
Ref. 24.

The frequencies of in-phase resonance modes are set by
the lateral size of the mesa, L,

�m =
c

��c

m�

L
, �1�

where �c is the c-axis dielectric constant. In particular, as-
suming �c=12, the resonance at �1 /2�=1 THz for the fun-
damental mode, m=1, takes place for a mesa with width
43 �m. In the resonance, a powerful, almost standing wave
is excited by Josephson oscillations, which synchronizes os-
cillations in the whole stack. Such synchronization function
of the cavity mode does not exist in a single junction.24 In
such a design, the frequency tunability in a single device is
sacrificed in favor of larger power and better efficiency. We
consider several specific cases of modulation, both symmet-
ric and asymmetric, which correspond to excitation of the
mode with the wavelength equal to L and 2L. For simplicity,
we assume that the mesa size along the field direction, Ly, is
larger than the wavelength of outcoming electromagnetic
wave, �� �0.3 mm for 1 THz�. The calculation can be
straightforwardly generalized to the opposite case Ly ���.
We calculate the I-V dependences, radiated electromagnetic
power, and power conversion efficiency for such systems.

Recently, the resonant electromagnetic emission from the
mesas fabricated out of underdoped BSCCO crystals has
been detected experimentally.25 The resonance frequencies
vary from 0.4 to 0.85 THz, and they increase roughly in-
versely proportional to the mesa widths. The origin of the
observed resonances is most probably due to the mechanism
described in this paper, even though no JCC modulation has
been introduced deliberately. Suppression of superconductiv-
ity near the edges during the fabrication process occurs to be
sufficient for excitation of the resonances. One can expect
that deliberately introduced JCC modulation will signifi-
cantly enhance the amplitude of the resonance and radiation
power.

The paper is organized as follows. In Sec. II, we present
the equation and boundary conditions for the oscillating
phase when it is identical in all junctions. Derivation of the
boundary condition for this case is summarized in Appendix
A. We also present the radiation power in terms of the oscil-
lating phase and power conversion efficiency. In Sec. III, we
derive the energy-balance relations in the dynamic state. In
Sec. IV, using these relations, we analyze the behavior near
the resonances and derive approximate results for resonant
enhancements of the current, radiated power, and power con-
version efficiency. Appendix B presents derivation of the ra-
diation losses for the resonance mode in a thin rectangular
mesa. In Sec. V, we consider several special cases of modu-
lation for which the problem allows for exact analytical so-
lutions �see Fig. 1�. We perform a detailed analysis of trans-
port and radiation properties for these cases.

II. GENERAL RELATIONS

We consider a stack of intrinsic Josephson junctions
�mesa� located at 0�x�L, with modulated JCC jJ�x�
=g�x�jJ, where jJ is the JCC density at the reference point at
which g�x�=1. When all junctions oscillate in-phase, the
c-axis homogeneous phase obeys the following reduced
equation:
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�2	

�
2 + �c
�	

�

+ g�x�sin 	 −

�2	

�x2 = 0, �2�

in which the unit of length is the c-axis London penetration
depth �c and the unit of time is the inverse plasma frequency
1 /�p. Both �c and �p are also defined at the reference point
at which g�x�=1. We will use these reduced units throughout
the paper, converting to real units only in some important
final results. The reduced damping parameter �c is related to
the quasiparticle tunneling conductivity, �c=4��c /�c�p. We
will neglect inhomogeneity in the dissipation parameter �c,
because dissipation plays a minor role in the following con-
sideration.

In the resistive state, the phase is given by

	 = �̃
 + �
,x�, �
,x� = Re���x�exp�− i�̃
�� , �3�

where �̃=� /�p is the reduced Josephson frequency. We will
use the linear approximation for the oscillating phase �
 ,x�
valid for �
 ,x��1. As sin��̃
�=Re�i exp�−i�̃
��, the ampli-
tude of the oscillating phase, �, obeys the following equa-
tion:

��̃2 + i�c�̃�� +
�2�

�x2 = ig�x� . �4�

The boundary conditions follow from the relation be-
tween the oscillating electric and magnetic fields in outside
medium and the Josephson relations between the oscillating
phase and these fields.19 In general, the boundary conditions
for the c-axis homogeneous oscillating phase describing ra-
diation can be written as

�

�x
= � �

−�




d
���
 − 
��
�

�
�
for x = 0 and L �5�

or, in Fourier representation,

��/�x = � i�� for x = 0 and L �6�

with

� = �̃�� and �� = �
0

�

d
��
�exp�i�
� .

Here, the kernel ��
−
�� depends on electromagnetic prop-
erties of the outside media. These boundary conditions as-
sume that there is only outcoming waves at both boundaries.
This means that we neglect reflected waves, coming back to
the stack, and mixture of radiation coming from the opposite
sides. Such a mixture can be suppressed if the mesa is
bounded by large metallic contacts on both sides acting like
screens. Derivation of the boundary condition in such a situ-
ation is presented in Appendix A and gives the following
result for ���̃�:

� = �̃�� =
Lz�̃

2�c�c
�	�̃	 −

2i�̃

�
ln

5.03��c�c

	�̃	Lz

 . �7�

The radiation losses are determined by the real part of �. Its
imaginary part only slightly displaces the resonance frequen-
cies. In the following, we will neglect the imaginary part in
the analytical estimates. Using typical values N=1000 and
�c=185 �m,26 we estimate sN /2�c�c=3.5�10−4, indicating
that 	�	 is typically very small.

The oscillating phase determines transport and radiation
properties of the mesa. Without interference, the total radia-
tion loss, Ptot, is a sum of radiation powers coming from the
left and right sides, Ptot���= Pleft���+ Pright���. The left-side
power, Pleft, is given by Poynting vector at the boundary,
which is determined by the oscillating electric and magnetic
fields at this side. These fields, in turn, may be related to the
boundary value of the phase, ��0�. In the case of the bound-
ary with free space, in real units, Pleft��� can be presented
as19

Pleft��� = Ly

�0
2�3N2

64�3c2 	��0�	2. �8�

Correspondingly, the power radiated from the right side,
Pright, is obtained from this formula by replacement ��0�
→��L�. For � /2�=1 THz and N=1000, we obtain an es-
timate for the prefactor,

�0
2�3N2

64�3c2 � 0.6
W

cm
.

This estimate provides the upper limit for possible radiation
power in the case of strong resonance ��1.

We can also obtain a useful general expression for the
power conversion efficiency, Q= Ptot / jzEzL, the fraction of
the total power fed to the junction which is converted to
radiation. The total power fed into the stack can be repre-
sented as

jzEz =
�0

2�

s2��4��c�2 ��c�̃ + iJ� , �9�

where �c�̃ is the quasiparticle current �cEz in units of jJ, and
iJ�g�x�sin �� is the reduced JCC density,

z Pright
y

L/2-L/2 x
_

0 L/2-L/2

r < 0

r > 0

xL0
W

Pleft

x
_

(a) (b) (c)

0

Lz

Ly

��

FIG. 1. �Color online� Mesas with modulation of the Josephson
critical current density considered in the paper: �a� linear modula-
tion, �b� parabolic modulation, and �c� steplike suppression of the
critical current near the edge. The lower plots illustrate the shapes
of lowest excited Fiske-resonance modes.
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iJ �
1

2L
�

0

L

dxg�x�Re���x�� . �10�

Combining Eqs. �8� and �9�, we derive

Q =
Re���

2L

	��0�	2 + 	��L�	2

�c�̃ + iJ

. �11�

In the following sections, we will first consider the behavior
near the resonance frequencies and then we will present the
most interesting special cases of modulation allowing for
exact solutions.

III. ENERGY BALANCE

We consider first the energy-balance relations. The re-
duced energy in units of LzLy�0

2 /32�3s2�c accumulated in
the phase oscillations inside the stack is given by

E = �
0

L

dx�1

2
� �

�

�2

+
1

2
� �

�x
�2
 . �12�

Therefore, the energy-change rate is given by

�E
�


= �
0

L

dx
�

�

� �2

�
2 −
�2

�x2
 + � �

�


�

�x



L
− � �

�


�

�x



0
.

�13�

Following Eq. �2�, the first term can be transformed to

�
0

L

dx
�

�

� �2

�
2 −
�2

�x2

= − �c�

0

L

dx� �

�

�2

− �
0

L

dx
�

�

g�x�sin �̃
 .

Here, the first term accounts for the quasiparticle damping,
while the second term gives the driving force from the Jo-
sephson oscillations leading to pumping of energy from a dc
source into the electromagnetic oscillations inside the stack.
The last two terms in Eq. �13� account for the radiation
losses at the boundaries. For the general boundary conditions
�5�, these terms can be transformed as

� �

�


�

�x



L
− � �

�


�

�x



0
= − � �

�

�̂

�

�




L
− � �

�

�̂

�

�




0
,

where we introduce a notation for the operator �̂ �
�


=�−�

 d
���
−
�� �

�
�
. Therefore, the total energy-change rate

can be written as

�E
�


= − �c�
0

L

dx� �

�

�2

− �
0

L

dx
�

�

g�x�sin��̃
� − � �

�

�̂

�

�




L

− � �

�

�̂

�

�




0
. �14�

For a steady state, the energy has to remain constant, mean-
ing that the energy supplied by the Josephson oscillations has
to be exactly compensated by the quasiparticle and radiation
losses.

IV. BEHAVIOR NEAR RESONANCES FOR ARBITRARY
MODULATION

In this section, we obtain approximate results for the cur-
rent and radiation in the vicinity of the resonance frequency
�̃m=m� /L, where the phase can be approximated as the cor-
responding cavity mode

�x� � � cos�m�x/L� . �15�

We neglect the small influence of the radiation on the shape
of the resonance mode. In this case, the energy in the mode
�12� and energy-change rate �14� can be approximated as

E �
L

2
�1

2
� ��

�

�2

+
1

2
�̃m

2 �2
 , �16�

�E
�


� −
L

2
��c� ��

�

�2

+
��

�

gm sin �̃
 +

4

L

��

�

�̂

��

�


 , �17�

where

gm =
2

L
�

0

L

dx cos�m�x

L
�g�x� �18�

is the coupling parameter. Therefore, equation for the mode
amplitude is given by

�2�

�
2 + �̃m
2 � + �c

��

�

+

4

L
�̂

��

�

= − gm sin �̃
 . �19�

Using complex representation �=Re��� exp�−i�̃
��, we ob-
tain a solution

�� =
igm

�̃2 − �̃m
2 + i��c + �r��̃

, �20�

where

�r =
4��

L
=

2Lz�

�cL�p
�21�

is the parameter of the radiation damping �the last formula is
written in real units�. One can see that both the quasiparticle
dissipation and radiation contribute to the resonance
damping.27 The cavity quality factor is given by Qc
=�m / ��c+�r�. Optimal power conversion is achieved when
the main contribution to damping comes from the radiation,
�c��r. Comparing the damping channels using Eq. �7�, we
obtain that this is achieved for a sufficiently large number of
junctions in the stack

N � N� =
�c�cL

2s�̃
=

2��cL

�s
. �22�

Taking s=1.56 nm, we also rewrite this formula in the prac-
tically convenient form as

N� � 576�c�1/�� cm��L��m�/f�THz� .

For typical values �c=0.003–0.01 �� cm�−1, L�40 �m,
and f =� /2�=1 THz, we estimate N�=70–250. In the re-
gime of dominating radiation losses, the cavity quality factor
is simply given by Qc=�cL /2Lz.
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The solution �20� allows us to obtain the average JCC

iJ = g�x�sin��̃
 + Re��� exp�− i�̃
��cos�m�x/L���

=
1

4

gm
2 ��c + �r��̃

��̃2 − �̃m
2 �2 + ��c + �r�2�̃2 . �23�

This gives the maximum current enhancement in the reso-
nance

iJ,max =
gm

2 /4
��c + �r��̃m

. �24�

A similar result has been derived in Ref. 24 for the case of a
single junction without radiation losses. Comparing this re-
sult with the reduced quasiparticle current, �c�̃, we see that
the resonance feature in I-V characteristic is pronounced if
gm�2���c+�r��c�̃. In the case of dominating radiation
losses, we can rewrite this condition in a more transparent
form, gm�2�2Lz�c /�cL�̃3/2. For �c=0.01, �̃=10, Lz
=1.5 �m, and L=40 �m corresponding to m=1, we obtain
that the resonance feature in the I-V dependence becomes
strong when the coupling parameter exceeds 0.5. In the case
of strong resonance, the total current i��̃�=�c�̃+ iJ non-
monotonically depends on the Josephson frequency �̃ �volt-
age�. In this case, only the increasing part di /d�̃�0 is
stable.

The total radiated power from both sides is given by

Ptot��� = 2Psc
��

�

�̂

��

�

= 2Psc Re�����̃2	��	2

=
2Psc���̃2gm

2

��̃2 − �̃m
2 �2 + ��c + �r�2�̃2 . �25�

Here, the scale of Ptot is given by Psc=LyLz�cEpjJ /2, where
Ep=�0�p /2�cs is the electric field corresponding to the
plasma frequency. For the maximum radiated power in the
resonance, we obtain Ptot��m�=2Psc��gm

2 / ��c+�r�2. In the
regime of dominating radiation losses, �c��r, using Eq. �7�
and jJ=c�0 /8�2s�c

2, we obtain a very simple and universal
estimate for maximum total radiated power �in real units�

Ptot��m� �
�LyL

2gm
2 jJ

2

2�
. �26�

An important observation is that for a tall stack in resonance,
the radiated power does not depend on N due to compensa-
tion between the factor N2 in front of the radiated power �8�
and the amplitude of phase oscillations in the resonance,
which, due to the increasing radiation losses, drops as �−2

�N−2 �see also Ref. 19�. This compensation only exists in the
regime when the damping of the resonance is caused by the
radiation which is realized under the condition �22�.

The power conversion efficiency is given by

Q =
Ptot

L�iJ + �c�̃��̃
. �27�

In resonance, it can be represented in a quite transparent
form as a product of two factors

Qr =
gm

2

gm
2 + 4��c + �r��c�̃

2

�r

�c + �r
, �28�

where the first factor represents the relative current increase
in the resonance, iJ,max / ��c�̃+ iJ,max�, and the second factor is
the relative contribution of the radiation to the resonance
damping. We can see that, remarkably, in resonance the con-
version efficiency can approach 100% provided �i� the reso-
nance feature is pronounced in I-V dependence, gm

�2���c+�r��c�̃, and �ii� the losses are dominated by the
radiation, �c��r. Both conditions are quite realistic.

Remember that simple and transparent results for the typi-
cal number of junctions �Eq. �22��, current �Eq. �24��, radia-
tion power �Eq. �26��, and conversion efficiency �Eq. �28��
are valid only in the case �Ly /c�1 and without mixing of
radiation coming from the opposite sides. These results can
be generalized for other cases. Radiation losses of the reso-
nance mode in the short rectangular mesa can be approxi-
mately calculated similar to radiation out of a rectangular
capacitor.28 These calculations are summarized in Appendix
B, and the results for the radiation damping parameter for
different cases are presented in Fig. 2. In the case of long
mesas, k�Ly �1, the radiation damping parameters for differ-
ent geometries differ only by numerical factors of order
unity. In the opposite limit, k�Ly �1, �r acquires an addi-
tional small factor �k�Ly.

V. SPECIAL CASES OF MODULATION

In this section, we consider several special cases of modu-
lation for which the problem allows for exact analytical so-
lution and full analysis of transport and radiation properties.
We will consider three cases: linear modulation, parabolic
modulations, and steplike suppression of the critical current.
Practical ways to prepare such modulations are suggested
Sec. VI.

A. Linear modulation

In this section, we consider a mesa with linearly modu-
lated JCC, g�x�=1−2rx̄ /L �see Fig. 1�a��. Here, we intro-

Long mesa, k�Ly� 1

�r �
4I1,0�k�L,k�Ly�

�2k�Ly
�r0

�r � �r0�1 � J0�k�L��

�r �
8I1,0�k�L,k�Ly�

�2k�Ly
�r0

�r � 2�r0�1 � J0�k�L���r � 2�r0

FIG. 2. �Color online� The parameter of radiation damping for
the fundamental mode for different mesa designs in the case k�Lz

�1: long mesa with screens mostly considered in the paper �left�,
rectangular capacitor �middle�, and mesa with ground plate �e.g.,
mesa fabricated on the top of bulk crystal� �right�. Here, �r0

=�Lz /�c�pL and the function I1,0�ax ,ay� is defined in Appendix B
�Eq. �B8��. In the regime of dominating radiation losses, the cavity
quality factor Qc is directly determined by �r as Qc=� /�r�p.

RESONANT ELECTROMAGNETIC EMISSION FROM… PHYSICAL REVIEW B 77, 014530 �2008�

014530-5



duce the new coordinate x̄=x−L /2, which is symmetrical
with respect to the mesa, −L /2� x̄�L /2. This means that
the JCC at the left side is larger by a factor �1+r� / �1−r� than
the JCC at the right side. Such a modulation couples homo-
geneous Josephson oscillations with the odd Fiske modes
�1�, m=2l+1, including the fundamental mode, m=1, and
the coupling parameter �18� to this mode is connected with
the modulation parameter as

g1 = 8r/�2. �29�

Solution of Eq. �4� with the boundary conditions �6� in the
case of linear modulation can be found exactly. Splitting the
solution into the symmetric and antisymmetric parts, ��x̄�
=�

�a��x̄�+�
�s��x̄�, we derive

�
�a��x̄� = −

2irx̄/L
�̃2 + i�c�̃

+
�2i/L + ��r sin�p�x̄�

��̃2 + i�c�̃��p� cos��� − i� sin����
,

�30�

�
�s��x̄� =

i

�̃2 + i�c�̃
+

� cos�p�x̄�
��̃2 + i�c�̃��p� sin��� + i� cos����

,

�31�

with

p�
2 � �̃2 + i�c�̃ and � � p�L/2.

Only the antisymmetric phase is coupled to the resonance
mode. In particular, for the boundary phases, we have

�
�a���

L

2
� = �

ir�− cos��� + sin���/��
p��p� cos��� − i� sin����

, �32�

�
�s���

L

2
� =

i sin���
p��p� sin��� + i� cos����

. �33�

The radiated power is determined by the boundary phases
using Eq. �8�, where we have to replace ��0� with
�

�a���L /2�+�
�s���L /2�.

Near the resonance �̃L=�, using p�� �̃+ i�c /2 and
cos������ /2− �̃L /2�− i�cL /4, we obtain

�
�a��L

2
� � −

8ir/�2

��̃ + i�c��2��̃ − �/L� + i��c + �r��
,

where �r is defined in Eq. �21�. Using the coupling parameter
�29�, we can see that this result is consistent with the general
formula �20� near the resonance. The maximum antisymmet-
ric phase in the resonance can be estimated as �

�a��L /2��
−2r /����̃2. It exceeds the nonresonant symmetric part ap-
proximately by a factor r /���r�cL /Lz. In resonance, using
Eqs. �26� and �29�, we obtain for the radiation power from
one side in real units

Pr � Ly

16r2L2jJ
2

�3�
.

It exceeds nonresonant emission by a factor �r�cL /Lz�2. In
particular, for � /2�=1 THz, jJ=500 A /cm2, and r=0.4, we
estimate Pr /Ly �0.05 W /cm.

In the average JCC �10�, the contributions from symmet-
ric and antisymmetric parts split, iJ= iJ,a+ iJ,s. Direct calcula-
tion gives
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FIG. 3. �Color online� Representative plots of the Josephson-frequency �or voltage� dependences of �a� the current density j, �b� radiated
power from the left side, P, �c� power conversion efficiency Q, and �d� amplitude of oscillating phase at the boundary for stacks with linearly
modulated JCC with parameters r=0.2 and r=0.4. The unit of current density is the JCC density, jJ, the frequency unit is the plasma
frequency �p, and the unit of radiated power is 10−3PJ �see Eq. �36��, corresponding to P /Ly �0.16 W /cm. The following parameters have
been used: L=0.23, �c=0.006, and Re���=0.00035�̃2. For comparison, the case of homogeneous JCC �r=0� is also shown, but P, Q, and
		2 are indistinguishable from zero at the scales of the plots. In this case, P�1.1�10−4 and Q�10−4 at �=13.4.
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iJ,a =
r2

2 � �c/3
��̃2 + �c

2��̃

+ Re� �cos��� − sin���/���2i/L + ��/�
��̃2 + i�c�̃��p� cos��� − i� sin����
� , �34�

iJ,s =
1

2
Re� i

�̃2 + i�c�̃
�1 −

2i� sin���/L
p� sin��� + i� cos����
 .

�35�

From the general formula for iJ,a near the resonance, we
obtain a much simpler result

iJ,a �
16r2

�4

��c + �r�/�̃
4��̃ − �/L�2 + ��c + �r�2 ,

and the maximum current enhancement in the resonance is
given by

iJ,a �
16r2/�4

�̃��c + �r�
.

These results are also consistent with the corresponding gen-
eral formulas �23� and �24� if we use the coupling parameter
�29�. For comparison, the symmetric part of the JCC at the
resonance frequency can be estimated as

iJ,s �
�c

2�̃3 +
��

��̃2 .

As expected, the resonant enhancement of the current ex-
ceeds the nonresonant radiation correction by the same factor
�r /���2= �r�cL /Lz�2 as for the radiation power.

For illustration, we present the behavior near the reso-
nance for mesas with two modulation parameters, r=0.2 and
r=0.4. As a unit of the radiation power, we selected the
quantity

PJ = Ly�c
2jJ

2/�p, �36�

which is independent of the sizes L and Lz. This choice of
unit is suggested by the result �26�. For �c=185 �m, PJ /Ly
�163 W /cm. Figure 3 shows the Josephson-frequency de-
pendences of �i� the current density j �in units of the JCC
density in the center�, �ii� radiated power P �in units of

10−3PJ�, �iii� the power conversion efficiency Q, and �iv� the
amplitude of oscillating phase at the boundary. For compari-
son, the case of homogeneous mesa �r=0� is also shown. In
calculation, we used the following parameters: L=0.23, �c
=0.006, and Re���=0.00035�̃2 �corresponding to N�1000,
�c�185 �m, and �c�0.003 �� cm�−1�. We can see that the
modulation leads to the appearance of a strong resonance
feature in the I-V dependence. Note that only I-V regions
with positive differential resistivity are stable. Current en-
hancement in the resonance is mainly caused by the genera-
tion of the powerful electromagnetic wave, and it is accom-
panied by a huge enhancement of outside radiation. The
maximum radiation power for used parameters for the case
r=0.4 corresponds to �0.05 W /cm, and it exceeds the non-
resonant radiation from the homogeneous mesa by more than
3 orders of magnitude. It is important to note that the power
conversion efficiency is also strongly enhanced in the reso-
nance, reaching 20% for r=0.4. The plot of 		2 shows that
for selected parameters, it remains smaller than 1 in the reso-
nance and, therefore, the linear approximation used in calcu-
lations is not violated.

In spite of the asymmetry of the JCC, the powers radiated
to the opposite sides of the mesa in resonance are approxi-
mately the same, because the radiation is mostly promoted
by the resonance mode which has identical amplitudes of the
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FIG. 4. �Color online� Comparison between the powers radiated
to the two opposite sides of the mesa for r=0.2 and the same pa-
rameters as in the previous figure. One can see that the difference is
rather small and amounts to a slightly different asymmetry of the
peaks.
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resonance feature in the I-V dependence with increasing number of
junctions in the stack, N, for r=0.2 and the same parameters as in
Fig. 3. Note that while the radiation power increases with N, the
resonant feature in current becomes less pronounced due to the
increasing radiation damping �N2. The inset in the upper plot
shows the N dependence of the maximum radiation power, and the
dashed line in this plot indicates the large-N limit obtained from Eq.
�26�.
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oscillating electric field at the opposite sides. This is illus-
trated in Fig. 4, where these powers are plotted for r=0.2.
One can see that the peaks have slightly different asymme-
tries originating from the symmetric phase.

Figure 5 illustrates the evolution of the radiation power
and resonance feature in the I-V dependence with increasing
number of junctions in the stack, N, for r=0.2 and the same
parameters as in Fig. 3. The number of junctions above
which the radiation losses dominate �Eq. �22�� can be esti-
mated for used parameters as N��75. We can see that the
current and radiation have opposite tendencies: while the ra-
diation power increases with N, the resonant feature in cur-
rent becomes less pronounced due to the increasing radiation
damping.

B. Symmetric parabolic modulation

In this section, we consider a symmetric modulation. For
simplicity, we assume a simple parabolic profile of the JCC
density, g�x̄�=1−r�2x̄ /L�2 �see Fig. 1�b�� where, again, x̄
=x−L /2 and 1−r is the ratio of JCCs at the edge and in the
center. The cases r�0 and r�0 correspond to current sup-
pression and enhancement at the edges, respectively. Such a
modulation will lead to excitation of only even frequency
modes �1�, m=2l. In the following, we will focus on the
lowest even mode with m=2. To have this resonance at
�2 /2�=1 THz assuming �c�12, the mesa size has to be

rather large, L=86.5 �m. The coupling parameter �18� to
this mode in our case is given by

g2 = − 4r/�2. �37�

The oscillating phase in the case of parabolic modulation
also can be found exactly. From symmetry, the solution of
Eq. �4� with boundary conditions �6� must be an even func-
tion of x̄, and it has the following form:

� =
2ir�2/L�2

��̃2 + i�c�̃�2 +
i�1 − r�2x̄/L�2�

�̃2 + i�c�̃
+ C cos�p�x̄� , �38�

where the first two terms give a particular solution of the
inhomogeneous equation and the last term is the solution of
the homogeneous equations. From the boundary conditions
�6�, we obtain

C =
− 4ir/L + ��2r/�2 + 1 − r�

�p� sin��� + i� cos������̃2 + i�c�̃�
, �39�

where p� and � are defined after Eq. �31�. The oscillating
phase given by Eqs. �38� and �39� determines all other ob-
servable properties.

The powers radiated from both sides �Eq. �8�� are deter-
mined by the boundary phase �,0=��x̄= �L /2�, which we
obtain from Eqs. �38� and �39�,
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FIG. 6. �Color online� The Josephson-frequency �or voltage� dependences of �a� the current density j, �b� radiated power to one side P,
�c� power conversion efficiency Q, and �d� amplitude of the oscillating phase at the boundary for stacks with parabolic profiles of the JCC
and negative modulation parameters, r=−0.2 and r=−0.4, corresponding to the case of current enhancement at the edges. All units are the
same as in Fig. 3. The following parameters have been used: L=0.8, �c=0.005, and Re���=0.003�̃2, corresponding to N�1000 and �c

�200 �m in the middle. For comparison, the case of a homogeneous mesa �r=0� is also shown. In this case, P�5�10−5 and Q�5
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�,0 =
2ir�2/L�2

��̃2 + i�c�̃�2 +
i�1 − r�

�̃2 + i�c�̃

+
�− 4ir/L + ��2r/�2 + 1 − r��cos���
�p� sin��� + i� cos������̃2 + i�c�̃�

.

In the resonance, �̃L=2�, using ��L /2��−2r / ����̃�, we
obtain for the power radiated from one side in real units

P��2� �
4LyL

2r2jJ
2

�3�
. �40�

This result is consistent with the general formula �26�, with
the coupling parameter �37�. For � /2�=1 THz, jc
=500 A /cm2, and r= �0.5, we obtain an estimate for the
radiated power in the resonance, P /Ly �0.085 W /cm. Note
that jJ in Eq. �40� is the JCC density in the center, while the
the JCC density at the edge, jJ,e, is given by jJ,e= �1−r�jJ. In
the case of r�0, vanishing of superconductivity in the
middle, which corresponds to the limits jJ→0 and r→−�,
does not lead to vanishing of radiation power because r2jJ

2

→ jJ,e
2 and the radiation is determined by the JCC density at

the edge.
To find the voltage-current characteristic, we calculate the

average reduced JCC �10�. Using oscillating phase �38�, we
obtain

iJ =
�c

2�̃��̃2 + �c
2��1 −

2r

3
+

r2

5
+

16r/L2

�̃2 + �c
2�1 −

r

3
�


+ Re�C

2
� sin �

�
− 2r��1 −

2

�2� sin �

2�
+

cos �

�2 
�� .

�41�

At the resonance frequency, �̃L=2�, we estimate iJ
��cr

2L3 /2�6Lz.

Figure 6 shows the representative Josephson-frequency
dependences of the current density j, radiated power P to one
side, the power conversion efficiency Q, and the amplitude
of oscillating phase at the boundary for negative modulation
parameters, r=−0.2 and r=−0.4, corresponding to the case
of stronger superconductivity at the edges. In calculation, we
used the following parameters: L=0.8, �c=0.005, and
Re���=0.003�̃2 �corresponding to N�1000 and �c

�200 �m in the center�. Overall, the behavior is very simi-
lar to the case of linear modulation shown in Fig. 3 with
minor quantitative differences. We also see that the modula-
tion leads to the appearance of a strong resonance feature in
the I-V dependence accompanied by a huge enhancement of
the outside radiation and power conversion efficiency.

C. Steplike suppression of critical current near the edge

In this section, we consider the case when there is a re-
gion with suppressed JCC on one side �see Fig. 1�c��

g�x� = � 1 for 0 � x � L − W

1 − r for L − W � x � L .
� �42�

The coupling parameter �18� to the fundamental mode in this
case is given by

g1 =
2r

�
sin��W

L
� . �43�

The solution of equation for the oscillating phase �4� can
be built in the piecewise form

� = �
i/��̃2 + i�c�̃� + A+ exp�ip�x� + A− exp�− ip�x�

for 0 � x � L − W

i�1 − r�/��̃2 + i�c�̃� + �A+ − C+�exp�ip�x� + �A− − C−�exp�− ip�x�
for L − W � x � L ,

� �44�

with p�
2 � �̃2+ i�c�̃. Matching � and d� /dx at x=L−W, we obtain

C� =
− ir/2

�̃2 + i�c�̃
exp��ip��L − W�� . �45�

Using this result, from the boundary conditions �6� we find the coefficients A�,

A� =
���p� � ��exp��i�̄� + �p� � ���1 − r�1 − cos ���� − irp��p� � ��sin �

2��̃2 + i�c�̃���p�
2 + �2�sin �̄ + 2ip�� cos �̄�

, �46�

where �̄� p�L and �� p�W. This gives, for the boundary phases which determine the outside radiation,

��0� =
i

�̃2 + i�c�̃
+

��p��1 + cos �̄� − i� sin �̄� − rp����1 − cos �� + ip� sin ��
��̃2 + i�c�̃���p�

2 + �2�sin �̄ + 2ip�� cos �̄�
, �47�
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��L� =
i�1 − r�1 − cos ���

�̃2 + i�c�̃
+

��p��1 + cos �̄� − i� sin �̄� − r���1 − cos �� + ip� sin�����p� cos �̄ − i� sin �̄�
��̃2 + i�c�̃���p�

2 + �2�sin �̄ + 2ip�� cos �̄�
. �48�

Near the resonance, �̃L=�, the coefficients A+ and A− can be
strongly simplified

A+ � A− �
− ir sin��̃W�/2�2

2��̃ − �/L� − i��c + �r�
.

In the resonance, A+�A−�r sin��̃W� /4�̃2��, giving

��0� �
i

�̃2 + i�c�̃
+

r sin��̃W�
2�̃��

.

At W�L, the resonance is strong, ��0��1, if rW�2�̃��

or, in real units,

rW �
�2�c

2Lz

�cL
2 .

The total radiated power in resonance can be estimated as

Ptot��1� �
2LyL

2jJ
2r2 sin2��W/L�

��
, �49�

which is consistent with the general formula �26�.
The reduced JCC flowing through the stack �10� can be

computed as

iJ =
�L − r�2 − r�W��c

2L��̃2 + �c
2��̃

−
�1 − r�r

2L
Im� sin �

p�
3 


+ Re� N/�̄
��̃2 + i�c�̃���p�

2 + �2�sin �̄ + 2ip�� cos �̄�

 ,

�50�

with

N = �p� cos
�̄

2
− i� sin

�̄

2
��� sin

�̄

2
− r sin

�

2
�� cos

�

2

+ i�p� cos
�

2
− i� sin

�

2
�sin

�̄

2

� + ir2 sin2 �

2
�p� cos

�

2

− i� sin
�

2
��p� cos��̄ −

�

2

 + i� sin��̄ −

�

2

� .

Near the resonance, we estimate N�−ip�
2 r2 sin2��̃W� /2,

which gives

iJ �
r2 sin2��̃W���cL/2 + 2���/2�

�2�sin2��̃L� + ��cL/2 + 2���2�
. �51�

The maximum current enhancement in the resonance is
given by

iJ,max �
r2 sin2��W/L�

�2�̃��c + 4��/L�

in agreement with Eqs. �24� and �43�.
General cumbersome formulas �47�, �48�, and �50� can be

significantly simplified if we assume the conditions �c, 	�	
�� and W�L valid in most practical situations. In this case,
these equations can be represented in approximate, simpler
form,

��0� �
i

�̃2 + i�c�̃
−

irW/�̃
sin �̄ − i��cL/2 + 2���cos �̄

, �52�

��L� �
i

�̃2 + i�c�̃
−

irW cos �̄/�̃
sin �̄ − i��cL/2 + 2���cos �̄

, �53�

and

iJ � �c�̃ +
�c

2�̃3 −
�crW

2L�̃3 + Re�2�� sin �̄ − i�̃rW�sin �̄ − 2i���cos��̄ −
�

2
� + cos��

2
�
 − 2�̃rW cos��̄ −

�

2
�


2L�̃3�sin �̄ − i��cL/2 + 2���cos �̄�
�

with �̄� �̃L and �� �̃W.
Figure 7 illustrates the evolution of the radiated power

and resonance feature in the I-V dependence with increasing
width of the suppressed region. The JCC density in the sup-
pressed region is assumed to be half of its value in the rest
part, r=0.5. For used parameters, the maximum radiation
power in this plot is around Pmax /Ly �0.05 W /cm.

VI. DISCUSSION AND SUMMARY

Let us discuss now practical ways to prepare mesas with
lateral modulation of the critical current density. Mesas with
linear JCC modulation can be fabricated in a crystal with
inhomogeneous doping. One possible way to prepare such
inhomogeneity is to utilize the sensitivity of doping in
BSCCO to the oxygen concentration. Due to strong tempera-
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ture dependence of the oxygen diffusivity,29 in principle, the
oxygen concentration profile in the crystal can be prepared
by short-time annealing by carefully selecting the annealing
temperature and time. In a similar way, mesas with paraboli-
clike profiles can be prepared by short-time annealing of me-
sas themselves already after fabrication. Another way to pre-
pare modulation in a controlled way is to use radiation with
high-energy electrons, protons, or heavy ions. If part of the
mesa is protected by a mask, this radiation will produce a
mesa with steplike suppression of the critical current.

The major technical challenge is to prepare a mesa with
significant modulation of the Josephson coupling identical in
all junctions. Variation of parameters in different junctions,
which may be caused by composition variations, inhomoge-
neous heating, and different junction areas, would strongly
reduce the optimal performance. The quantitative analysis of
the radiation properties of mesas with such parameter varia-
tions in different layers will be done elsewhere.

As the optimal mesa size is rather large, another major
technical problem is sample heating due to quasiparticle
damping. The self-heating in the BSCCO mesas has been
investigated by many experimental groups.30 The major fo-
cus of these studies was the influence of heating on the gap
feature in I-V characteristics, which is located at voltages of
30–60 mV/junction. Even though our voltage range is sig-
nificantly lower, �2 mV/junction, the heating is still ex-
pected to be significant due to the required large lateral size
of the mesa. For example, for �c=0.003 1 /� cm, N=1000,
and Ly =300 �m, 10 mW of power will be dissipated inside
the mesa. This heat has to be removed from the mesa faces.
Therefore, efficient heat removal is crucial for operation of
the device. Recent experimental observations of the resonant
emission using underdoped BSCCO �Ref. 25� demonstrate
that the heating effects can be manageable even in large-size

mesas with lateral sizes of several hundred micrometers in
the voltage range corresponding to the Josephson frequencies
around 1 THz.

The designs with improved thermal management may in-
clude, for example, fabrication of underdoped mesas on the
top of overdoped crystal, using massive gold contacts on the
top and bottom of the mesa, and placing an insulator with
high thermal conductivity, such as sapphire, in good thermal
contact at the side of the mesa. From these considerations,
mesas with asymmetric modulation look more preferable
than ones with symmetric modulation, because they need a
smaller lateral size for the lowest resonance mode. In the
case of symmetric modulation, the design with suppression
of the JCC in the middle, r�0, looks more practical for
better thermal management. In fact, the material in the
middle can even be made insulating, because this part is
needed only to form almost standing wave at the working
frequency. To excite resonance mode, it is sufficient to have
superconducting regions only at the edges.

In conclusion, we demonstrated that a stack of the intrin-
sic Josephson junctions with modulated Josephson coupling
represents a very powerful and efficient source of electro-
magnetic radiation at the resonance frequency set by its lat-
eral size. Selecting this size, the generation frequency can be
tuned to the terahertz range. Power levels up to several mil-
liwatts look plausible in such structures.
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APPENDIX A: BOUNDARY CONDITIONS FOR THE
HOMOGENEOUS OSCILLATING PHASE

In this appendix, we consider the boundary conditions for
the oscillating phase at the edges and the radiation power for
a stack of intrinsic Josephson junctions. We will limit our-
selves to the case when the oscillating phase is identical in
all junctions. A more general case will be considered else-
where. The oscillating phase � defined by Eq. �3� is con-
nected to the electric and magnetic fields by the Josephson
relations

Ez = −
i��0

2�cs
�, �A1�

By =
�0

2�s
�x�. �A2�

Therefore, the boundary conditions for the oscillating phase
at the edges are determined by the relation between the fields
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FIG. 7. �Color online� The radiated power and I-V dependence

near the resonance for different widths of the suppressed region
near the right side of the mesa. The JCC density in the suppressed
region is assumed to be half of its value in the rest part, r=0.5. All
units and parameters are the same as in Fig. 3.
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Ez and By in the outside media, which we assume to be
monochromatic with time dependences �exp�−i�t�.

Outside dielectric media at 	x−L /2	�L /2 is characterized
by the dielectric constant �d, and we assume only outgoing
wave in this space. The Fourier components of fields with
	kz	���dk� propagate in the media, while the field compo-
nents with 	kz	���dk� decay. In particular, for Ez�� ,x ,kz� at
x�L, we have

Ez��,x,kz� = Ez��,L,kz�exp�ikx��,kz��x − L�� , �A3�

with

kx��,kz� = ���dk�
2 − kz

2 sign��� for 	kz	 � ��d	k�	

i�kz
2 − �dk�

2 for 	kz	 � ��d	k�	 .
�
�A4�

Other field components, Ex and By, are also expressed via
Ez�� ,L ,kz�. First, Ex�� ,x ,kz� is obtained from Eq. �A3� and
the Maxwell equation � ·E=0, and then By�� ,x ,kz� is ob-
tained using the Maxwell equation ���E�y = ik�By, leading
to the following result:

By��,x,kz� = − Ez��,L,kz�
�dk�

kx��,kz�
exp�ikx��,kz��x − L�� .

�A5�

This gives the relation between the fields at the boundary x
=L,

By�L,kz� = − ���,kz�Ez�L,kz� ,

���,kz� = � 	k�	�d/��dk�
2 − kz

2 for 	kz	 � ��d	k�	

− ik��d/�kz
2 − �dk�

2 for 	kz	 � ��d	k�	 .
�

�A6�

The condition at x=0 has opposite sign, By�0,kz�
=��� ,kz�Ez�0,kz�. Note again that the term ��� ,kz� for 	kz	
���dk� originates from outgoing electromagnetic wave �ra-
diation�, while the term ��� ,kz� for 	kz	���dk� is due to the
wave decaying at distance ��kz

2−�dk�
2 �−1/2 from the crystal

boundary. The latter term does not carry energy out of the
junctions. In particular, for kz=0, we have By�L ,0�=
−��dEz�L ,0�, leading to the simple boundary condition for
the homogeneous oscillating phase in the limit Ly ,Lz��0,
�x�= � �i��d� /c�� for x=L and 0. The relation �A6� can
also be rewritten in the frequency-space representation as

By�L,z,�� = − �
−�

�

dz�U�z − z�,��Ez�L,z�,�� ,

U�z,�� = −
�d

2
�	k�	J0���d	k�z	� + ik�N0���d	k�z	�� ,

�A7�

where J0�z� and N0�z� are the Bessel functions.
The same approach can be used in the realistic case of a

crystal small along the z axis, Lz��0, if we know the radi-
ated electric field at the planes x=0 and L outside of the

crystal, at 	z	�Lz /2. If we put well conducting screens there,
we can approximate Ez=0 at 	z	�Lz /2. In this case for the
homogeneous n-independent electric field, we obtain for the
average magnetic field at the edge

By�L,�� � −
Lz�d

2 �	k�	 −
2i

�
k� ln

C
��dLz	k�	
Ez�L,�� ,

�A8�

with C=2 exp�3 /2−�E��5.03, where �E�0.5772 is the Eu-
ler constant. We can see that for a small-size mesa, the mag-
netic field at the boundary is reduced by the factor �Lzk� in
comparison to the infinite-Lz case. This gives the following
boundary condition for the oscillating phase:

�x� = �
ik�Lz�d

2 �	k�	 −
2i

�
k� ln

C
��dLz	k�	
� �A9�

for x=L and 0. This corresponds to the boundary conditions
�6� and �7� in reduced coordinates and �d=1 used in the
paper. Therefore, for short crystals, the boundary condition
cannot be written in the form of an instantaneous relation in
between the space and time derivatives of the phase. This
significantly complicates their numerical implementation.
Screens also completely isolate semispaces x�L and x�0,
and eliminate interference of radiation coming from the op-
posite edges.

APPENDIX B: RADIATED POWER FROM A
RECTANGULAR MESA

The radiation power from a short rectangular mesa can be
found approximately. For such a mesa, radiation influences
weakly the shape of the resonance mode. In such a situation,
the radiation is mostly determined by the distribution of the
oscillating electric field at the mesa edge, which, in turn, is
determined by the shape of the internal mode. Finding the
radiation occurs to be a somewhat easier problem than find-
ing general boundary conditions for the oscillating phase. An
approximate expression for the radiated electric field far
away from the crystal and, thus, the radiation power can be
calculated using Huyghens’ principle, as it is developed in
the theory of antennas �see, e.g., Ref. 31�. This approach has
been applied to resonance modes in rectangular capacitors in
Ref. 28. Such a consideration clearly shows the role of
screens and crystal geometry in the formation of the radia-
tion. Huyghens’ principle in the formulation of Schelkunoff
�equivalence principle� states that we can find fields outside
of real sources �currents and charges� if we know equivalent
sources placed on some boundary surface surrounding real
sources. In particular, the equivalent magnetic current Ms is
related to the tangential components of the electric field E on
the surface as

Ms = −
c

4�
n � E , �B1�

where n is the normal vector on the boundary surface.
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In the following, we consider the crystal inside the vol-
ume 0�x�Lx, 0�y�Ly, and 0�z�Lz bounded by thin
metallic contacts on the top and bottom �see Fig. 8�. The
contacts are highly conductive, and there we can neglect the
tangential electric field. At the crystal edges x=0 and Lx, we
can neglect the magnetic field when the radiation power is
small, as in the case of radiation from a capacitor with a
small distance Lz between electrodes, k�Lz�1 �see Ref. 28�.
In this case, we need to account only for the electric field at
the crystal edges, which produces the magnetic equivalent
currents �B1�. They are related to the oscillating phases � at
these edges according to Eq. �A1�. We consider modes inside
the crystal which are uniform along the z axis �synchronized
Josephson oscillations in all intrinsic Josephson junctions�.
In this approximation, the electric field Ez inside the crystal
is described by standing waves characterized by the indices
m and n:

Ez�r� = Ez�m,n�cos�kx,mx�cos�ky,ny�,

kx,m = �m/Lx, ky,n = �n/Ly . �B2�

Faraway radiated electric field in terms of Ez�n ,m� is given
by the expression

E = −
k�Lz

c

exp�ik�r�
r

� Ms�r��exp�− ik�r�er��er � e���d��,

where the integral is taken over the perimeter of the crystal,
and the coordinate system as well as definitions of the unit
vectors er and e�� are given in Fig. 8. Integration over con-
tour � gives the following result28:

E

Ez�m,n�
=

Lz exp�ik�r�
4�r

�Px
k�k�

kx,m
2 − k�

2 − Py
k�k�

ky,n
2 − k�

2 �GxGy ,

where

Px = sin �e + cos  cos �e�,

Py = − cos �e + cos  sin �e�,

and

�k�

k�
� = k� sin �cos �

sin �
� .

The interference factors Gx=1− �−1�n exp�ik�Lx� and Gy =1
− �−1�m exp�ik�Ly� describe the contribution of waves com-
ing to the faraway point r from opposite sides of the crystal
x�=0 and x�=Lx along the x axis as well as from opposite
sides y�=0 and y�=Ly, respectively. Their role in the forma-
tion of the radiation becomes clear if we will consider dif-
ferent modes. From the radiated electric field, we can com-
pute the total radiated power as

P =
c

8�
r2�

−�

�

d��
0

�

sin d�	E	2 + 	E�	2� . �B3�

For homogeneous oscillations m=n=0, we obtain

E

Ez�0,0�
= −

Lz exp�ik�r�
4�r

� k�

k�

Px −
k�

k�

Py��1 − exp�− ik�Lx��

��1 − exp�− ik�Ly��

corresponding to

E

Ez�0,0�
= −

Lz exp�ik�r�
4�r

�1 − exp�− ik�Lx sin  cos ����1 − exp�− ik�Ly sin  sin ���
sin  cos � sin �

, �B4�

and E�=0. The radiated power �B3� is given by

P =
c	Ez�0,0�	2

32�3 �
−�

�

d��
0

�

d
�1 − cos�k�Lx sin  cos ����1 − cos�k�Ly sin  sin ���

sin  cos2 � sin2 �
.

x

y

z

�

�

r

r’ Ms
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Lz 'e�
FIG. 8. �Color online� Geometry for radiation out of a rectan-

gular mesa.
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For small-size crystal Lx ,Ly �k�
−1 with almost uniform Jo-

sephson oscillations, we obtain

P =
c	Ez�0,0�	2

48�2 k�
4 Lx

2Ly
2Lz

2. �B5�

This is the result for dipole radiation because all sizes of the
crystal are small in comparison with the wavelength of the
radiated field. For the crystal with size Ly bigger than the
radiation wavelength, k�Ly �1, the result is quite different:

P �
�LyLz

2	Ez�0,0�	2

16�
�1 − J0�k�Lx�� . �B6�

Now the waves coming from opposite sides of the crystal
along the y axis do not interfere with each other and radia-
tion power becomes proportional to Ly. For k�Lx�1, we
obtain the power proportional to k�

2 Lx
2 due to destructive in-

terference of the waves coming from opposite sides of the
crystal along the x axis. If we put highly conductive metallic
screens separating the spaces x�Lx and x�0 so that the
edge x=0 radiates only into x�0 half-space, while that at
x=Lx radiates only into x�Lx half-space �see Fig. 2�, the
interference will be eliminated. Such screens also double the
radiation coming from one side. This can be demonstrated in
the simplest way using image technique:31 radiation from the
real electric currents induced at the screens is equivalent to
radiation from the image magnetic current placed next to the
original magnetic current. This leads to doubling of the ef-
fective magnetic current, Ms→2Ms, and quadruples the ra-
diated power density. As the radiation now is limited only by
half-space, the total radiated power doubles. Therefore, in
the presence of screens, the factor �1−J0�k�Lx�� in Eq. �B6�
has to be replaced by the factor 2. This means that the
screens strongly enhance the radiation induced by the homo-
geneous mode in the case k�Lx�1. Such a design with

screens for a crystal thin along the x axis was proposed in
Ref. 23. This design gives the possibility of frequency tun-
ing. In addition, heating is reduced due to small Lx. However,
the crystal should have a large number of layers to synchro-
nize oscillations in all junctions and work in the super-
radiation regime.

Next, we consider the fundamental cavity mode �m ,n�
= �1,0�, more relevant for the subject of this paper. In this
case, we obtain

E

Ez�1,0�
=

Lz exp�ik�r�
4�r

�Px
k�k�

��/Lx�2 − k�
2 + Py

k�

k�
�

��1 − exp�− ik�Lx���1 + exp�− ik�Ly�� .

The components of the faraway electric field are given by the
expressions

E

Ez�1,0�
= −

Lz exp�ik�r�
4�r

sin2  − ��/ax�2

sin2  cos2 � − ��/ax�2

cos �

sin  sin �

��1 + exp�− iax sin  cos ���

��1 − exp�− iay sin  sin ��� ,

E�

Ez�1,0�
= −

Lz exp�ik�r�
4�r

��/ax�2

sin2  cos2 � − ��/ax�2

cos 

sin 

��1 + exp�− iax sin  cos ���

��1 − exp�− iay sin  sin ��� ,

with ax=k�Lx and ay =k�Ly. The radiated power �B3� can be
represented as

P =
cLz

2	Ez�1,0�	2

4�3 I1,0�k�Lx,k�Ly� , �B7�

with

I1,0�ax,ay� = �
0

�/2

d��
0

�/2

d
�1 + cos�ax sin  cos ����1 − cos�ay sin  sin ���

sin  sin2 �

�sin2  − ��/ax�2�2 cos2 � + ��/ax�4 cos2  sin2 �

�sin2  cos2 � − ��/ax�2�2 .

�B8�

In the regime k�Ly �1, this gives the following result:

P �
�LyLz

2	Ez�1,0�	2

16�
�1 + J0�k�Lx�� . �B9�

Now we have a constructive interference of waves coming
from opposite sides of the crystal along the x axis because
electric field on these sides has opposite signs generating the
same-sign magnetic fields. For such mode, screens do not
influence much the radiation in the limit k�Lx�1. The re-
duced parameter of radiation damping �r introduced in Eqs.
�20� and �21� is related to the radiation power as

P = �rLxLyLz
�c�p

16�
	Ez�1,0�	2. �B10�

The above results can also be straightforwardly general-
ized to the case when a stack is bounded by large-size
ground plate at the bottom, z=0, see Fig. 2 �right�. This is the
case, for example, for the mesa fabricated on the top of bulk
crystal. If we treat the ground plate as an ideal conductor, its
influence can again be taken into account by the image
technique.31 This just leads to the doubling of the effective
magnetic current, Ms→2Ms, and to the doubling of the total
radiated power P→2P.
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