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Stacks of intrinsic Josephson junctions in the resistive state can by efficiently synchronized by the internal
cavity mode resonantly excited by the Josephson oscillations. We study the stability of dynamic coherent states
near the resonance with respect to small perturbations. Three states are considered: the homogeneous and
alternating-kink states in zero magnetic field and the homogeneous state in the magnetic field near the value
corresponding to half flux quantum per junction. We found two possible instabilities related to the short-scale
and long-scale perturbations. The homogeneous state in modulated junction is typically unstable with respect
to the short-scale alternating phase deformations unless the Josephson current is completely suppressed in one
half of the stack. The kink state is stable with respect to such deformations and homogeneous state in the
magnetic field is only stable within a certain range of frequencies and fields. Stability with respect to the
long-range deformations is controlled by resonance excitations of fast modes at finite wave vectors and
typically leads to unstable range of the wave vectors. This range shrinks with approaching the resonance and
increasing the in-plane dissipation. As a consequence, in finite-height stacks the stability frequency range near
the resonance increases with decreasing the height.
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I. INTRODUCTION

Superconducting tunneling junctions are natural voltage-
tunable sources of electromagnetic radiation due to the ac
Josephson effect.1 As radiation from a single junction is very
small, large-size arrays of artificially fabricated junctions
have been used to enhance power of electromagnetic radia-
tion, see early reviews2,3 and more recent papers.4,5 The main
challenge is to synchronize all junctions in the array. In this
case the total emitted power is expected to be proportional to
the square of the total number of junctions.

Intrinsic Josephson junctions in the high-temperature lay-
ered superconducting materials,6 such as Bi2Sr2CaCu2O8
�BSCCO�, provide a very promising base for developing co-
herent generators of electromagnetic radiation which may
operate in the terahertz frequency range. These materials
have several important advantages in comparison with artifi-
cial structures made out of conventional superconductors in-
cluding �i� the large packing density of the junctions, �ii� a
large value of the superconducting gap �up to 60 mev� which
allows to bring the Josephson frequency into the terahertz
range, and �iii� possibility to make very large arrays of prac-
tically identical junctions.

The stack of junctions can be a powerful, coherent, and
efficient generator only if the oscillations of the supercon-
ducting phases in all junctions are synchronized. Due to
weak intrinsic interaction between the junctions, this is a
challenging task. One possible way to synchronization is to
use interactions between the junctions via the generated ex-
ternal radiation.7 In this case, for efficient coupling to the
radiation field, a junction stack �mesa� must have small lat-
eral size ��10 �m� and contain a very large number of
junctions ��104�. Such a mesa would be a frequency-tunable
source with the considerable power-conversion efficiency.
The obvious technological challenge of this design is the
requirement to fabricate structures with such large number of

almost identical junctions. This design has not yet been
implemented in practice.

A very promising route to efficient synchronization is to
excite an internal cavity resonance in finite-size samples
�mesas�.8,9 Being excited, the resonance mode can entrain
oscillations in a very large number of junctions. The fre-
quency of this mode is set by the lateral size of the mesa and
for the resonance frequency in the terahertz range the width
has to be rather large �40–100 �m�. The experimental
demonstration8 and confirmation10,11 of this mechanism
marks a major advance in the quest for Josephson terahertz
generators.

In general, the structure of the coherent state and the
mechanism of pumping energy into the cavity mode are non-
trivial issues. Homogeneous phase oscillations at zero mag-
netic field do not couple to the Fiske modes. Such coupling
can be facilitated by introducing an external modulation of
the Josephson critical current density.9 In this case the am-
plitudes of the generated standing wave and of the produced
radiation are proportional to the strength of the modulation.

An interesting alternative possibility has been demon-
strated recently.12–14 It was found that near the resonance an
inhomogeneous synchronized state is formed. In this state,
the stack spontaneously splits into two subsystems with dif-
ferent phase-oscillation patterns, corresponding to the alter-
nating phase kinks and antikinks statically located near the
center. This leads to a static phase shift between the oscilla-
tions in the two subsystems varying from 0 to 2� in a narrow
region near the stack center. In spite of this c-axis inhomo-
geneity, the oscillating electric and magnetic fields are al-
most homogeneous in all the junctions. The formation of this
state promotes efficient pumping of the energy into the cav-
ity resonance.

Another potential candidate for the coherent state produc-
ing strong emission is a homogeneous state in the external
magnetic field, also known as a rectangular Josephson-vortex
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lattice. In spite of strong experimental efforts, the existence
of this state has not yet been clearly demonstrated, except for
small-size stacks at very small velocity.15 It was argued that
in the large-size crystals the rectangular lattice is almost al-
ways unstable.16 For a finite-size system the stability analysis
of the homogeneous state has been performed recently17 and
stability regions have been found.

As large-size stacks have a huge number of degrees of
freedom, stability of the coherent states with respect to small
perturbations is an important and nontrivial issue. Linear sta-
bility analysis amounts to calculating the full frequency
spectrum for small perturbations with respect to steady-state
coherent solutions and verifying that there are no exponen-
tially growing perturbations. The stability analysis allows to
evaluate the range of parameters where the coherent states
are possible. For linear arrays of point junctions the stability
analysis has been performed in Refs. 18 and 19. In this case
stability is strongly influenced by the external load. A large
array of the small-size intrinsic Josephson junctions can be
stabilized by the radiation field which acts similar to the
external capacitive load.7

In this paper we perform a systematic comparative analy-
sis of the linear stability of different coherent states in the
array of extended Josephson junctions near the resonance.
We revealed two types of instabilities. The short-wavelength
instability corresponding to the alternating phase deforma-
tions develops for states which have regions of negative local
time-averaged Josephson coupling. This instability is sensi-
tive to the nature of the dynamic state. The homogeneous
state in the modulated junctions is typically prone to this
kind of instability. The long-wavelength instability with
wavelengths larger than the London penetration depth � ap-
pears due to the parametric resonance excitation of the fast
modes at finite wave vectors. Analysis of this instability is
essentially identical for all dynamic states. The instability
criterion depends on several factors including behavior of the
resonance frequency shift with increasing the in-plane and
c-axis wave vectors and the relation between damping of the
uniform mode and modes at finite wave vectors. The most
essential parameters influencing stability include the shift of
the Josephson frequency with respect to the resonance, the
stack height, and the in-plane quasiparticle dissipation. The
paper is organized as follows. In Sec. II we present the dy-
namic phase equations and coherent solutions near the inter-
nal resonance. In Sec. III we derive the linear dynamic equa-
tions for small perturbations with respect to steady states. In
Sec. IV we consider the short-wavelength instabilities of dif-
ferent steady states and present the numerical test for these
instabilities in the stacks with modulated critical current. In
Sec. V we describe the stability analysis with respect to the
long-wave deformations and numerical verification of this
analysis. The description of numerical simulations used to
check some of our analytical results is presented in Appen-
dix.

II. PHASE DYNAMIC EQUATIONS AND COHERENT
SOLUTIONS

The dynamic equations for the Josephson-junction stacks
have been derived in several papers20 and have been used in

different forms in numerous simulation and theoretical
studies.21 These equations can be written in the reduced form
as coupled equations for the phases �n and dimensionless
magnetic fields hn= �hx,n ,hy,n�,

�2�n

��2 + �1 − 	�n
2��
c

��n

��
+ g�x�sin �n − eijz�ihj,n� = 0,

�1�

�2�n
2hj,n − �1 + 
ab

�

��
��hj,n − eijz�i�n� = 0. �2�

Here i , j=x ,y, eijz is the Levi-Civita symbol �exyz=−eyxz
=1�. The units in these equations are selected as follows:
1 /�p is the unit of time with �p being the plasma frequency,
the c-axis London penetration depth �c is the unit of length,
�0 / �2��cs� is the unit of the magnetic field. The function
g�x� describes possible modulation of the Josephson current
which was suggested as the way to couple to the internal
resonance.9 We consider both modulated and unmodulated
�g�x�=1� cases. The equations depend on four parameters,
the layer-charging parameter 	,22 two damping parameters,

c=4�c / ��c�p�, 
ab=4�ab / ��c�

2�p�, and the ratio �
=� /s, where c and ab are the components of quasiparticle
conductivity, � is the in-plane London penetration depth, and
� is the anisotropy factor. We will study a finite-size stack
�mesa� containing N junctions with lateral sizes Lx and Ly.
We consider the case Ly�Lx.

We tested some of our analytical results with numerical
simulations. The numerical procedure is the same as in Ref.
13. For completeness, details of the numerical simulations
are described in Appendix.

A. Coherent states in zero magnetic field

We consider the stack in the coherent resistive state, in
which all junctions have identical voltage drops. In this state
the dynamical phase can be written as23

�n�x,�� 	 �� + �n�x,�� .

Further, we assume that the Josephson frequency � is close
to the in-phase resonance frequency �m=m� /Lx and the
resonance cavity mode is excited inside the mesa meaning
that the oscillating phase has the large resonance contribution
�n�x ,��
cos�m�x /Lx�cos���+	�. We will mostly focus on
the experimentally relevant case of the fundamental mode
m=1. One can distinguish two particular cases: for a homo-
geneous �uniform� solution the phases �n�x ,�� are identical
in all junctions and for an inhomogeneous �nonuniform� so-
lution the phases �n�x ,�� vary from junction to junction. For
the homogeneous solution,9 �n�x ,��=��x ,��, Eqs. �1� and �2�
reduce to the sine-Gordon equation,

�2�

��2 + 
c
��

��
+ g�x�sin � −

�2��x,��
�x2 = 0. �3�

In this case coupling to the resonance mode is only induced
by the external modulation g�x�. Representing the oscillating
phase as ��x ,��=Re����x�exp�−i����, we obtain an equation
for the complex amplitude ���x�,
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��2 + i
c���� +
�2��
�x2 = ig�x� . �4�

This equation has to be supplemented by the boundary con-
ditions accounting for radiation. For symmetric mesas gen-
eral boundary conditions can be presented in the following
form:

���
�x

�Lx� = i����Lx� + i�̃���0� , �5a�

���
�x

�0� = − i����0� − i�̃���Lx� . �5b�

The coefficients � and �̃ depend on the particular geometry.
For example, for the case of an isolated mesa on a metallic
plate with thin metallic contact on the top

�	
�2Lz

2�c
�1 −

2i

�
ln� C

k�Lz
�� ,

�̃	 −
�2Lz

2�c
�J0�k�Lx� + iN0�k�Lx�� ,

where k�=� /c, Lz=Ns is the stack height, J0�z� and N0�z�
are the Bessel functions, and C
1. As � and �̃ are small,
near the resonance we can look for solution in the form

�� = � cos�m�x/Lx� + ��x� ,

where ��x� is the small correction accounting for the radia-
tion boundary conditions. With this ansatz, Eq. �4� becomes

��2 − �m
2 + i
c��� cos�m�x/Lx� + ��2 + i
c��� +

�2�

�x2

= ig�x� .

As � is small, we can approximately replace ��2+ i
c���
→�m

2 � and look for correction satisfying the mode-matching
condition �m

2 �+�2� /�x2�cos�m�x /Lx�. In this case, ��x� can
be found as

��x� 	 a��x − Lx/2�sin�m�x/Lx�

giving �m
2 �+�2� /�x2=2a� cos�m�x /Lx��m� /Lx�. Substitut-

ing this result into the previous equation and taking projec-
tion to the mode, we obtain

� =
igm

�2 − �m
2 + 2a�m�/Lx� + i
c�

,

where gm= �2 /Lx��0
Lxcos�m�x /Lx�g�x�dx is the coupling pa-

rameter. The complex constant a has to be found from the
boundary conditions Eq. �4� where in the right-hand side we
can neglect ��x�. In this case the approximate boundary con-
ditions for the correction become

��

�x
�Lx� 	 i��− 1�m� + �̃�� ,

��

�x
�0� 	 − i�� + �− 1�m�̃��

and they give identical results for a,

a 	 �2i/m���� + �− 1�m�̃� .

The amplitude of the cavity mode can finally be represented
as

� =
igm

�1 + 	r��2 − �m
2 + i�
r + 
c��

, �6�

where


r =
4

�Lx
Re�� + �− 1�m�̃� =

2�Lz

�cLx
�1 − �− 1�mJ0�k�Lx��

determines radiation contribution to the damping9,24 and

	r = −
4

L�2 Im�� + �− 1�m�̃�

	
Lz

��cLx
�ln� C

k�Lz
� + �− 1�m�

2
N0�k�Lx��

determines the resonance frequency shift due to radiation.
This small frequency shift is frequently neglected. However,
it will be essential for the long-range stability analysis.
Therefore, the homogeneous oscillating phase near the reso-
nance can be represented as

��x,�� 	 − Im� gm exp�− i���
�1 + 	r��2 − �m

2 + i
�
�cos�m�x

Lx
� , �7�

where 
=
c+
r is the total mode-damping parameter.9

The homogeneous solution is not the only possible coher-
ent state. A spectacular example of an inhomogeneous coher-
ent solution is the alternating-kink state recently reported in
Refs. 12 and 13. For this state the phase distribution is given
by

�n�x,�� = �− 1�n�k�x� + ��x,�� ,

where, for the fundamental mode, the static-kink phase �k�x�
changes from 0 to � near the center. As the region of this
change is extremely narrow,13 in the equation for the homo-
geneous oscillating phase ��x ,�� one can approximate �k�x�
with the step function �k�x�→���x−Lx /2�, where ��x�=0
for x�0 and ��x�=1 for x�0. Within this approximation,
such a state becomes equivalent to the stack with modulated
current density with the modulation function gk�x�=sgn�x
−Lx /2�. In this case the homogeneous part of the oscillating
phase is again given by Eq. �7�, where for m=1, gm→gk,1
	4 /�. While for the homogeneous solution coupling to the
resonance mode only exists due to the external modulation,
for the alternating-kink state such coupling is self-generated.

B. Homogeneous solution in magnetic field

We also consider the homogeneous resonance solution in-
duced by the external magnetic field he applied along y di-
rection,
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��x,�� = �� + hex + ��x,��

in a stack without the external modulation, g�x�=1. The os-
cillating phase ��x ,��=Re����x�exp�−i���� is determined by
the following equation:

��2 + i
c���� +
�2��
�x2 = i exp�− ihex� .

We will mainly focus on the most interesting case of the
fundamental mode and magnetic fields corresponding to a
magnetic flux through each junction close to half-flux quan-
tum, he=� /Lx, providing the most efficient coupling to this
resonance. The homogeneous solution for the junction stack
is essentially identical to the corresponding solution for a
single junction,25 see also Refs. 17 and 26. In particular,
when the frequency is close to the resonance frequency �m,
the dominating contribution to the oscillating phase again
has the resonance form given by Eq. �7� with

gm → gh,m =
2

Lx
�

0

Lx

dx cos�m�x/Lx�exp�− ihex�

= −
2i�1 − �− 1�mexp�− iheLx��heLx

�heL�2 − �m��2 �8�

being the coupling parameter due to the magnetic field. In
contrast to the zero-field case, this parameter is a complex
number. For the fundamental mode

gh,1 =
4iheLx exp�− iheLx/2�cos�heLx/2�

�2 − he
2Lx

2 . �9�

In particular, gh,1=1 for heLx=�. This function is shown in
the upper left plot of Fig. 1.

III. EQUATIONS FOR SMALL PERTURBATIONS WITH
RESPECT TO COHERENT DYNAMIC STATE

We will study the linear stability of the homogeneous so-
lution with respect to small perturbations. A similar analysis
has been done in a recent paper17 for the homogeneous so-
lution in magnetic field. We found, however, several impor-
tant instabilities which were missed in this paper.

We consider first the case of the homogeneous state in
modulated junctions. With very good accuracy this analysis
can also be applied to the kink state because c-axis inhomo-
geneities in this state are located in a very narrow region near
the center. Perturbing the homogeneous solution, �n�x ,��
=��+��x ,��+�n�r ,�� and hn�r ,��=hn

�0��x ,��+ h̃n�r ,��, we
obtain the linear equations for small perturbations �n�r ,��
and h̃n�r ,��,

�2�n

��2 + �1 − 	�n
2�� �
c

��n

��
+ g�x�C�x,���n − eijz�ih̃j,n� = 0,

�10�

�2�n
2h̃j,n − �1 + 
ab

�

��
��h̃j,n − eijz�i�n� = 0, �11�

where C�x ,��cos���+��x ,���. Due to this oscillating co-
sine, perturbations are not monochromatic, oscillations with

the frequency � are coupled with the frequencies ���. At
��1 we can look for solution in the form

�n�r,�� 	 �
q,ky

cos�q�n + 1/2��cos�kyy�exp�− i���

� �
�=0,�1

�̃k,��x�exp�i����

with

q = �mz/�N + 1�, ky = �my/Ly �12�

and neglect other frequency components. For simple treat-
ment of the c-axis modes, we assumed that the stack is
bounded by metallic contacts which can be approximated by
ideal conductors.24 In this presentation ���ky ,q� is the
complex eigenfrequency which has to be found from Eqs.
�10� and �11� and the boundary conditions. The state is stable
only if Im���ky ,q���0 for all ky and for all q’s from 0 to �.
Separating the slow and fast parts in Eqs. �10� and �11�,
using relation

g�x�C�x,���n�r,�� 	
g�x�

2 �
q,ky

cos�q�n + 1/2��cos�kyy�

� ��̃k,0 �
�=�1

exp�i��� − i���

+ �
�=�1

�̃k,� exp�− i���� ,

and, excluding the magnetic fields,
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FIG. 1. �Color online� Upper left plot shows the field depen-
dence of the coupling parameter �gh,1�, Eq. �9�. Right plot illustrates
shapes of the local averaged Josephson coupling U�x� /U�, Eq. �21�,
for different magnetic fields and for 
� / ��1

2−�2�=0.3. Lower left
plot shows blowup of the region near the center for heLx=� to
illustrate existence of the region with U�x��0 which may lead to
the short-scale instability.
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h̃i,k,� =
1

1 + �2q̃2/�1 − i
ab�� − ����
eijz� j�̃k,�

with �=0,�1 and q̃=2 sin�q /2�, we obtain coupled equa-
tions for the slow and fast phase oscillations, see also Refs.
7, 16, and 17,

��̃0
2 − g�x�C̄ − Gq,0

−2 ky
2��̃k,0 + Gq,0

−2 �2�̃k,0

�x2 =
g�x�

2 �
�=�1

�̃k,�,

�13�

��̃�
2 − Gq,�

−2 ky
2��̃k,� + Gq,�

−2 �2�̃k,�

�x2 =
g�x��̃k,0

2
, �14�

where we introduced notations

�̃�
2  �� − ���2/�1 + 	q̃2� + i
c�� − ��� ,

Gq,�
2  1 + �2q̃2/�1 − i�� − ���
ab� .

Using �=��+Re����x�exp�−i����, the time-averaged co-

sine C̄�x��cos ��� can be evaluated as

C̄�x� 	 − Im����x��/2

	 −
gm��1 + 	r��2 − �m

2 �
��1 + 	r��2 − �m

2 �2 + 
2�2

cos�m�x/Lx�
2

. �15�

Equations �13� and �14� have to be supplemented with the
boundary conditions. At finite q, coupling to the external
fields is negligible and with high accuracy we can use simple
nonradiative boundary conditions

��̃k,�

�x
= 0 for x = 0,Lx. �16�

The stability analysis reduces to computing spectrum of
complex eigenfrequencies ��k� from Eqs. �13� and �14� with
nonradiative boundary conditions and finding out if there are
regions in k space where Im���k���0.

Case of homogenous state in external magnetic field

The above derivation can be directly extended to the case
of the homogeneous state in external magnetic field. Perturb-
ing the homogeneous solution, �n�x ,��=��+hex+��x ,��
+�n�r ,��, we obtain Eqs. �10� and �11� for small perturba-
tion �n�x ,��, where now we have g�x�=1 and C�x ,��
cos���+hex+��x ,���. Separating again the slow and fast
components in the oscillating phase Eq. �12�, and using

C�x,���n�x,�� 	
1

2�
q

cos�q�n + 1/2��exp�− i���

� �
�=�1

��̃k,0 exp�i���� + hex��

+ �̃k,� exp�− i�hex�� ,

we obtain coupled equations for the slow and fast phase os-

cillations, which are identical to Eqs. �13� and �14� with
replacements

g�x�
2 �

�=�1
�̃k,� →

1

2 �
�=�1

�̃k,� exp�− i�hex� ,

g�x��̃k,0

2
→
�̃k,0

2
exp�i�hex�

in the right-hand sides of these equations. The average in

time cosine C̄�x��cos ��� can be evaluated as

C̄�x� = − Re� gh,m exp�ihex�
�1 + 	r��2 − �m

2 + i
�
� cos�m�x/Lx�

2
.

In the following sections we will analyze different instabili-
ties of the dynamic coherent states.

IV. SHORT-WAVELENGTH INSTABILITY

A. Modulated junction

Consider first the region �q̃�1. In this case instability
develops only for the homogeneous in the y-direction pertur-
bations, ky =0, and we only consider such perturbations. In
this regime the derivative term in the fast part Eq. �14� be-
comes small and can be neglected giving the estimate

�̃k,� 	
g�x�

2
� �� − ���2

1 + 	q̃2 + i
c�� − ����−1

�̃k,0,

meaning that, roughly, �̃k,�
 �̄k,0 /�2��̄k,0. Substituting
this estimate into the Eq. �13� for the slow part, we conclude
that coupling to the fast terms in this regime is weak and can
be neglected. Therefore, the equation for the slow part be-
comes

��̃2 − U�x���̃k,0 + Gq,0
−2 �2�̃k,0

�x2 = 0, �17�

where U�x�=g�x�C̄�x� determines the local plasma fre-
quency. For the lowest mode we obtain

U�x� =
g�x�g1��1

2 − �1 + 	r��2�/2
��1

2 − �1 + 	r��2�2 + 
2�2 cos��x/Lx� . �18�

For large q we can use the simple boundary condition

��̃k,0 /�x=0 at the edges, x=0,Lx. As the local “spring con-
stant” U�x� determines the local plasmon frequency �loc
���U�x�, the existence of regions with negative U�x� is a
potential source of instability. This instability may be elimi-
nated by the gradient term which we have to verify. Consider
for definiteness the lowest mode and negative coupling pa-
rameter, g1�0. The simplest modulation giving such cou-
pling is monotonically increasing g�x�. In this case at �
��1 the spring constant U�x� is negative at x�Lx /2 and has
minimum near the edge x=0 where g�x� is the smallest.
Therefore, the region for potential instability is located near
the left edge, at x�Lx. As the most unstable mode is local-
ized near x=0, we can expand U�x� with respect to x
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g�x�cos��x/Lx� 	 g�0��1 + a1x −
a2

2
x2�

with

a1 = g��0�/g�0�, a2 = ��/Lx�2 − g��0�/g�0�

giving the equation

��̃2 + U��1 + a1x −
a2

2
x2���̃k,0 + Gq

−2�2�̃k,0

�x2 = 0

with

U� 
g�0��g1���1

2 − �1 + 	r��2�/2
��1

2 − �1 + 	r��2�2 + 
2�2 � 0.

From this equation we estimate,

�̃2 	 − U��1 +
a1

2

2a2
− C� a2

U�Gq
2�

with

a2

U�Gq
2 =

��/L�2 − g��0�/g�0�
1 + �2q̃2/�1 − i�
ab�

��1
2 − �1 + 	r��2�2 + 
2�2

g�0��g1���1
2 − �1 + 	r��2�/2

and C
1. Roughly, the system can only be stable if
�a2U�Gq

−2��1 for all q’s. As �Gq
−2� has minimum at q=��q̃

=2�, it is sufficient to check the stability condition at this
value of q. Skipping numerical factors on the order of unity,
we can approximately write the stability criterion as

g�0�g1��1
2 − �2�

��1
2 − �2�2 + 
2�2 �

�2

4�2Lx
2 . �19�

This condition is very hard to satisfy because the right-hand
side of this equation is very small due to �Lx�1. Therefore,
the homogeneous solution is almost always unstable with
respect to alternating deformations localized near the edge
with suppressed Josephson coupling. The formal reason for
the large-q instability is that the local spring constant in Eq.
�18� changes sign due to the factor cos��x /Lx�. This insta-
bility would be completely eliminated if the modulation
function g�x� would also changes sign in the middle. It is
practically impossible to prepare such modulation artificially.
The best artificial modulation for which the homogeneous
state is stable with respect to the short-scale perturbations is
steplike modulation for which the Josephson current com-
pletely suppressed in one half of the stack, g�x�=0 for x
�Lx /2. In this case the plasma frequency is zero in this half
and stability is achieved due to the gradient term in Eq. �17�.

We will demonstrate below that the alternating-kink solu-
tion is stable with respect to the large-q perturbation because
it generates an effective modulation changing sign in the
middle of the stack making the spring constant positive in
the whole stack. Another interesting case is the stack in the
magnetic field corresponding to half-flux quantum per junc-
tion. In this case the linearly growing contribution to the
phase changes from 0 to � across the junction which is simi-
lar to a sign-changing modulation. We will consider these
cases in more detail in the following sections.

B. Absence of short-wavelength instability for the
alternating-kink state

The stability analysis for the modulated system can be
directly applied to alternating-kink state. It is crucial, how-
ever, that the effective modulation function gk�x� is close to a
step function changing from 1 to −1 in the middle of the
stack, i.e., it changes sign in the middle which compensates
change in sign in the factor cos��x /Lx�. This eliminates the
short-scale instability. Indeed, the effective spring constant in
Eq. �18�, which determines the local oscillation frequency,
can be evaluated as

Uk�x� = gk�x�C̄�x� 	
gk,1��1

2 − �1 + 	r��2�/2
��1

2 − �1 + 	r��2�2 + 
2�2 �cos��x/Lx�� .

�20�

It only touches zero in the midpoint and never goes negative
within the stack. Therefore, in contrast to the homogeneous
state in modulated junction, the alternating-kink state is
stable with respect to short-scale perturbations.

C. Test of short-scale instability in modulated stack
with numerical simulations

We verified the short-scale instability in modulated junc-
tions using numerical simulations described in Appendix.
First, we probed the stability of the uniform state in the stack
with linear modulation of the Josephson current, jJ�x�
= jJ0�1+r�2x /L−1��. We used the modulation parameter r
=0.4. If we start from the uniform n-independent state and
solve the dynamic equations without noise than instability
does not develop and we can trace the current-voltage depen-
dence corresponding to this uniform state, see Fig. 2. How-
ever, if we add to the phases a small alternating perturba-
tions, �−1�n��, than we observe that the uniform state blows
up and, after extended time evolution, it converges to the
dynamic-kink state. The initial stage of this time evolution is
illustrated in the lower part of Fig. 2. From the phase snap-
shots we can see that the instability develops near the edge
with suppressed Josephson current, as the analytical analysis
predicts. The upper right plot in Fig. 2 shows the time evo-
lutions of the difference between phases in the sixth and fifth
junctions at the left edge. We can see that this difference
evolves from 0 corresponding to the uniform state to the
value 2� corresponding to the kink state. This transition is
accompanied by large-amplitude oscillations with the period
much longer than the period of Josephson oscillations. These
oscillations are a consequence of the small c-axis dissipation
parameter, 
c=0.01, which we used in our calculations.

We also verified that the uniform state remains stable in
the stack with steplike modulation of the Josephson current,
jJ�x�= jJ0 for x�Lx /2 and jJ�x�=0 for x�Lx /2. The current-
voltage dependence for this state is also shown in Fig. 2.

D. Homogeneous state in magnetic field

Due to the complex coupling function in the case of finite
magnetic field, the short-range stability has features which
are special for this case. In the regime �q̃�1 the coupling to
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the fast phase can be neglected, as for the modulated stack
case. This means that the slow part again obeys Eq. �17� in
which the local spring constant U�x� now is simply given by

the average cosine, U�x�= C̄�x�. For the fundamental mode,
we obtain

U�x� = U��−

�

�1
2 − �2cos�he�x −

Lx

2
��

− sin�he�x −
Lx

2
���cos��x

Lx
� , �21�

with

U� =
2heLx cos�heLx/2�
�2 − �heLx�2

�1
2 − �2

��2 − �1
2�2 + 
2�2 .

For simplicity, we omit here the factor �1+	r� in front of �2

which has very little influence on the short-wavelength sta-
bility. Shapes of this function at different fields is illustrated
in the upper right plot of Fig. 1 for 
� / ��1

2−�2�=0.3. Note
that U�x� always changes sign at the center, x=Lx /2, see,
e.g., lower left plot in Fig. 1. However, for 
�� ��1

2−�2� the
region of negative U�x� is very narrow and its existence does
not automatically imply instability. We analyze the central
region as the most prone to instability. For ��1

2−�2��
� the
spring constant behaves near x=Lx /2 as U�x�	U��
� / ��1

2

−�2�+hex̃��x̃ /Lx with x̃=x−Lx /2, and Eq. �17� becomes

��̃2 − U�� 
�

�1
2 − �2 + hex̃��x̃

Lx
��̃k,0 + Gq

−2�2�̃k,0

� x̃2 = 0.

From this linear-oscillator-type equation, we derive equation
for the complex eigenfrequency

�2/�1 + 	q̃2� + i
c� = U��−

2�2�/Lx

4he��1
2 − �2�2 +��he/Lx

Gq
2U�

� ,

which gives the stability criterion

� �he/Lx

2�2�1 − cos q�U�

�

2�2�/Lx

4he��1
2 − �2�2 .

For the most “dangerous” mode at q=�, assuming �1
2−�2

�
�, we obtain the following stability criterion:

�1
2 − �2 � ���gh,1��2
4�4

8he
3Lx

�1/5

. �22�

Large value of �2 in the right-hand side is compensated by
small value of 
4�4. Note that increasing dissipation reduces
the stability range. Taking typical values he	5, �1	5,
heL=�, �=150, and 
=0.002, this inequality gives ��1
−�� /�1�1.3�10−3 and for larger dissipation, 
=0.01,
��1−�� /�1�0.005. This conditions are not too restrictive.
A representative stability region in the magnetic field is il-
lustrated in Fig. 3. We conclude that the homogeneous state
in the magnetic field corresponding to half-flux quantum per
junction remains stable with respect to the short-scale defor-
mations if the frequency is not too close to the resonance.

V. LONG-WAVELENGTH STABILITY

We analyze now the acoustic-type instability at very small
ky and q. With very minor modifications, this analysis applies
to all dynamic states considered in this paper. Obviously, it is
most relevant for the systems which are stable with respect to
the short-length deformations. Consider Eq. �14� for the fast

components �̃k,�1. At small ky and q this equation gives the
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FIG. 2. �Color online� Upper left plot shows current-voltage
dependences near the resonance for three dynamic states: �i� un-
stable uniform state in the stack with linear modulation of the Jo-
sephson current, jJ�x�= jJ0�1+r�2x /L−1�� with r=0.4, �ii� kink
state, and �iii� stable uniform state in the stack with steplike modu-
lation of the Josephson current, jJ�x�= jJ0��2x /L−1�. Dashed lines
show corresponding theoretical curves. Instability for the first state
was triggered at the point j=0.13 marked at the plot. Lower plots
shows snapshots of the phase distributions in the eight bottom junc-
tions for t=0, 20TJ, and 40TJ, where TJ=2� /�J	0.5 is the period
of Josephson oscillations for the uniform state. All phases are
shifted to the range �−� ,��. The snapshots illustrate development
of instability near the left edge. Upper right plot shows the time
evolutions of the difference between phases in the sixth and fifth
junctions at the left edge. This difference changes from 0 corre-
sponding to the uniform state to 2� corresponding to the kink state.
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FIG. 3. �Color online� Stability range of the homogeneous state
in magnetic field with respect to the short-scale phase deformations
based on Eq. �22� with the listed representative parameters.
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resonance solution. To obtain approximate solution for

�̃k,�1, we will keep only the resonance term, �̃k,��x�
	�k,� cos�m�x /Lx�. Further analysis shows that the coordi-

nate dependence of �̃k,0 is weak and can be neglected. In this
case, the mode amplitude �k,� can be found following the
same reasoning as for the homogeneous solution leading to

�k,� 	
gm�̃k,0/2

�̃�
2 − Gq,�

−2 ��m
2 + ky

2�
.

Using this result, we present Eq. �13� for the slow compo-

nent �̃k,0 as

��̃0
2 − g�x�C̄�x� − Gq,0

−2 ky
2��̃k,0 + Gq,0

−2 �2�̃k,0

�x2

=
g�x�

4 �
�=�1

gm�̃k,0 cos�m�x/Lx�

�̃�
2 − Gq,�

−2 ��m
2 + ky

2�
. �23�

The typical length scale for its variation, l�

= ����̃0
2−Gq,0

−2 ky
2��Gq,0��−1 exceeds the stack width Lx because

we consider the case of small ky, q, and � when Gq,0
1 and

� ,ky�1 /Lx. This allows us to neglect x dependence of �̃k,0.

In this case g�x�C̄�x� and g�x�cos�m�x /Lx� can be replaced
by their averages over x

�g�x�C̄�x��x 	 −
gm

2 ��1 + 	r��2 − �m
2 �/4

��1 + 	r��2 − �m
2 �2 + �
c + 
r�2�2 ,

�g�x�cos�m�x/Lx��x = gm/2.

We also can neglect the charging effects because at the typi-
cal wave vector q
� /N and 	�0.1 the charging correction
	q2 is tiny and has only minor influence on stability criteria.
In these approximations, the equation for ��q� becomes

�2 −
ky

2

1 + kz
2/�1 − i�
ab�

+ i
c� =
gm

2

8�m
G��,k� �24�

with kz=2� sin�q /2�	�q, k= �ky ,kz� and

G��,k� = −
2�m��1 + 	r��2 − �m

2 �
��1 + 	r��2 − �m

2 �2 + 
2�2 + �
�=�1

�m��� − ���2 −
�m

2 + ky
2

1 +
kz

2

1 − i
ab�� − ���

+ i
c�� − ����
−1

.

If we eliminate the radiaton corrections, 
r and 	r, which
only appear at very small ky and kz then this function satisfies
the translational invariance condition G�0,0�=0. Note that
we cannot take true limit ky ,kz→0 because we consider a
finite-size stack with geometrical sizes smaller than the
wavelength of outside radiation.

As the Josephson frequency � is close to the cavity-mode
frequency �m, we can keep only the dominating resonance
terms. To simplify presentation of the second term, we intro-
duce the shift of the plasma frequency at finite ky and kz with
respect to the homogeneous mode,  k=�p�km ,0 ,0�
−�p�km ,ky ,kz�, and mode damping parameter, 
k,

 k + i

k

2
=

1

2�m
��m

2 −
�m

2 + ky
2

1 + kz
2/�1 − i
ab�� − �����

	
�m

2
� kz

2

1 + 
ab
2 �m

2 −
ky

2

km
2 � + i

�m
2

2


abkz
2

1 + 
ab
2 �m

2 .

Introducing also the resonance detuning ��=�−�m, we sim-
plify G�� ,k� as

G��,k� 	 −
�� + �r

��� + �r�2 + 
2/4
+

�� +  k

��� +  k�2 − �� + i
k/2�2

�25�

with �r=	r�m /2 being the radiation shift of the resonance
frequency and


k 	 
c +
�m

2 
abkz
2

1 + 
ab
2 �m

2 �26�

is the damping of the plasma mode at finite wave vector �we
neglect small terms on the order of kz

2ky
2�.

Due to the resonance structure of G�� ,k�, in the limit
 k , �����gm /�8�m it typically exceeds the right-hand side
of Eq. �24� and the dispersion equation is approximately
given by G�� ,k�=0. In this approximation we obtain the
following result for the eigenfrequencies:

���k� 	 − i

k

2
����̃� +  ̃k�� ̃k −


2

4�̃�
� , �27�

where we introduced new notations �̃�=��+�r and  ̃k= k
−�r to absorb the radiation frequency shift. Only the mode
�+�k� is potentially unstable. The instability takes place
when the expression under the square root is negative and
the imaginary square root exceeds the first term. This leads
to the following condition for the instability in the �ky ,kz�
plane:

��̃� +  ̃k�� 
2

4�̃�
−  ̃k� � 
k

2

4
. �28�

Analysis of this criterion shows that the long-range stability
is determined by several factors including behavior of the
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plasmon frequency shift  k and the relation between the
damping of the homogeneous mode 
 and damping of ex-

cited modes at finite wave vectors, 
k. As the shift  ̃k may
take both positive and negative values depending on ky and
kz, it is more transparent to find the instability range for this
parameter,

� ̃k +
�̃�
2

−

2

8�̃�
� � 1

2
���̃� +


2

4�̃�
�2

− 
k
2. �29�

In particular, there is no instability in the kz region satisfying
the condition


k � ��̃�� +

2

4��̃��

which explicitly can be written as condition for kz

kz � kz,i,

kz,i
2 =

1 + 
ab
2 �m

2


ab�m
2 ���̃�� +

�
c + 
r�2

4��̃��
− 
c� . �30�

Qualitatively, we can conclude that the in-plane dissipation
suppresses instability until 
ab�m�1 while the radiation
damping enhances the instability. As for a finite-size stack
the kz values are limited from below, kz��� /N, the above
equation also determines the stable frequency range for a
stack with given size. We can see that this range expands
with decreasing N.

In small-kz range where the condition in Eq. �30� is not
satisfied there may be a range of ky where the system is
unstable. We can find from Eq. �29� an explicit presentation
for this range

� ky
2

km
2 −

kz
2

1 + 
ab
2 �m

2 +
�̃�
�m

−

2

4�̃��m

�
��� �̃�

�m
+


2

4�̃��m

�2

+

k

2

�m
2 . �31�

The instability regions in the �ky ,kz� plane for the different
Josephson frequencies near the resonance are illustrated in
Fig. 4�a�. One can see that the instability region rapidly
shrinks with approaching the resonance. Vanishing of insta-
bility at large kz is caused by increasing mode damping due
to the in-plane dissipation. This is illustrated in Fig. 4�b�
where we plot the instability region at fixed Josephson fre-
quency for different in-plane dissipation parameter 
ab. We
can see that the instability regions shrinks with increasing

ab. Existence of the instability region in the �ky ,kz� plane
does not automatically imply instability in real junction
stacks. In a finite-size stack a discrete set of the wave vectors
is allowed, ky,m=m� /Ly, kz,n=n�� /N. The system is only
unstable if at least one of discrete pairs �ky,m ,kz,n� falls inside
the instability region at given frequency, as illustrated in
Fig. 4�a�.

At finite radiation corrections and at sufficiently strong
in-plane dissipation the instability region may vanish com-
pletely in some frequency range. The condition for absence
of instability can be written as

max
kz
� kz

2

1 + 
ab
2 �m

2 −
�̃�
�m

+

2

4�̃��m

+�� �̃�
�m

+

2

4�̃��m

�2

+

k

2

�m
2 � � 0.

Finding the maximum leads to the following range of fre-
quency at which there is no instability at all

� ����
�m

−
Wab

2
� 
c

�m
+ �m
ab	r��

�
Wab

2
�� 
c

�m
+ �m
ab	r�2

−

2

�m
2 �32�

with Wab=�1+�m
2 
ab

2 +�m
ab. This region only exists if in-
equality �m

2 
ab	r�
r is satisfied, leading to the following
condition for the in-plane dissipation �m
ab
�2� / ln�C /k�Lz�.

The largest value of kz at which the instability boundary
crosses ky =0, kz0, can be found as

kz0
2 = 	r −

�̃�
�m

−

2

4�̃��m

+ 
c
ab +��1 + ��m
ab�2�� �̃�
�m

+

2

4�̃��m

�2

− � 
c

�m
+ �m
ab�	r −

�̃�
�m

+

2

4�̃��m

��2

. �33�
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FIG. 4. �Color online� �a� Evolution of the instability region for
the long-wave deformations in the kz-ky plane with approaching the
resonance from below. Unstable regions are inside the domes. Used
representative parameters are shown in the plot. The curves are

marked by the value ��̃1−�� /�1=−�̃� /�m. Dashed line shows de-

pendence ky /k1=kz /�1+
ab
2 �1

2 corresponding to condition
�p�k1 ,ky ,kz�=�p�k1 ,0 ,0�. The points illustrate discrete wave vec-
tors for a finite-size stack. In this example, the system becomes
unstable for ��̃m−�� /�m between 0.04 and 0.08. �b� Evolution of
the instability region in the kz-ky plane at fixed frequency with
increasing the in-plane dissipation parameter 
ab.
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A finite-height stack is stable with respect to the long-range
deformations if the minimum wave vector kz,min=�� /N
=��ab /Lz exceeds the maximum between the two frequency-
dependent wave vectors kz,i and kz0 defined by Eqs. �30� and
�33� leading to the following criterion:

N�
��

max�kz,i,kz0�
. �34�

This condition gives to the frequency-height stability dia-
grams illustrated in Fig. 5. As the radiation corrections 	r
and 
r are proportional to the stack height, these boundaries
have to be computed self-consistently. A simple estimate for
the wave vector kz0 can be obtained for weak in-plane dissi-

pation �m
ab�1 away from the resonance at �̃��0, ��̃��
�
 ,�m	r. In this case kz0

2 	2��̃�� meaning that the finite-

height stack becomes unstable at ��̃�� /�m� ��� /N�2 /2.
In presence of radiation corrections, two regimes exists

depending on strength of the in-plane dissipation. At small
�m
ab there is always the critical stack height above which
the system becomes unstable. Coupling to the radiation de-
creases this critical height, i.e., it enhances the instability.
This is in contrast to the small-size stacks away from
resonances,7 where the coupling with outside radiation stabi-
lizes the synchronized state. This behavior changes at large
in-plane dissipation. In this case a range of frequencies exists
within which the system remains stable for all stack heights.
Also, in this regime coupling to radiation somewhat in-
creases the critical stack height away from the resonance.

Test of the long-range instabilities with numerical
simulations

We made several approximations in our analytical deriva-
tions, which allowed us to obtain relatively simple criteria
for the long-range stability. To verify validity of these ap-
proximations, we checked some of the analytical results nu-
merically. As suggested by the representative phase diagrams
shown in Fig. 5, the long-range instabilities are only ex-
pected in rather tall stacks with heights N exceeding 1000

junctions. It is very difficult to simulate such tall stacks di-
rectly. Fortunately, if we only interested in the long-range
instabilities, this is not necessary. For this purpose, we simu-
lated a coarse-grained model with the step in c-direction �z
containing many junctions. As demonstrated in the Appen-
dix, by change in variables, this coarse-grained model can be
reduced to the original model with reduced parameter �,
�→�cg=� /�z. This trick allows us to use the same code with
different parameters to probe the long-range stability of very
tall stacks. In this case, the number of layers in the model N
is replaced by the number of numerical slices Ncg=N /�z
=N�cg /�. In numerics we use the two-dimensional model
which only allows us to check our analytical results in the
simplest situations when the instability is homogeneous in y
direction �ky =0�. We also neglected the layer-charging ef-
fect, 	=0, and did not take into account the radiation correc-
tions, 	r=
r=0. Having in mind to probe the long-range sta-
bility of the kink state, we use the modulation function
g�u�=sgn�u−Lx /2�. With such modulation function the sys-
tem is stable with respect to the short-scale perturbations

To probe the long-range stability, we numerically solved
the dynamics equations for increasing transport current in the
voltage range corresponding to the Josephson frequencies
close and below the fundamental resonance. We added small
deformation ���u ,n��cos���n−1 /2� /N� at the beginning of
every run for new value of the current and monitored the
time evolution of the difference ��0,1�−��0,Ncg�. Figure 6
shows results of simulations of the coarse-grain model,
which reveal the long-range instability. Figure 6�a� shows the
current-voltage dependences near the resonance for three sets
of parameters: �i� �cg=5, Lx=1.25�J�z, and Ncg=50,
�ii� �cg=10, Lx=2.5�J�z, and Ncg=50, and �iii� �cg=5, Lx

=1.25�J�z, and Ncg=40. In all cases we used the dissipation
parameters 
c=0.01 and 
ab=0.2. The values of the total
stack heights N=Ncg� /�cg listed in the legend were obtained
assuming �=150. For all three cases we observe the long-
range instability which leads to appearance of a small addi-
tional bump in the current-voltage dependence. Development
of the instability is illustrated in Fig. 6�b� in which we show
time evolution of ��0,1�−��0,Ncg� for different currents for
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FIG. 5. �Color online� Stability range with respect to the long-wave deformations near the resonance as a function of the stack height
based on Eq. �33�. Two regimes are illustrated in plots �a� and �b�, which are controlled by the in-plane dissipation. Dashed lines show
stability boundaries without radiation corrections. In the calculations we used the following representative parameters, 
c=0.005, �1=10,
and �=130. For radiation parameters we used 	r=3.3·10−4Lz /�ab and 
r /�1=5.2·10−4Lz /�ab, where the numerical coefficients were
estimated assuming �ab=0.25 �m, Lx=80 �m, !c=12, and ln�C /k�Lz�=4.
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the first set of parameters. We can see that for for j"0.121
the initial perturbation decays with time indicating stability
of the homogeneous state while for j#0.120 the perturbation
does not decay. The instability onsets are marked by the
horizontal arrows in Fig. 6�a�. The sets of parameters �i� and
�ii� correspond to simulations of the same physical system
with two different coarse-graining parameters, �z=30 and 15
�assuming �=150�. We observed that in both cases the insta-
bility develops at the same voltage indicating that the coarse
graining does not influence much the long-range stability.

The set �iii� has the same parameters as the set �i�, except for
the smaller height. We see that the instability moved to the
lower voltage, as expected.

We now compare the location of the instability onset with
the analytical predictions. At ky =0 the condition of stability
is given by �� /N�kz0 and, without the radiation correc-
tions, formula �33� for kz0 significantly simplifies

kz0
2 = 2� ����

�1
−


c
2

4�����1
− 
c
ab�, for 	r,
r = 0. �35�

Moreover, for the parameters we used in simulations the
terms with 
c are negligible and with high accuracy we can
estimate the shift from the resonance where the instability is
expected as

���� 	 ��1/2����/N�2 = ��1/2����cg/Ncg�2.

This gives ����	0.62, Vinst=�1− ����	11.95 for the first and
second sets of parameters and ����	0.97, Vinst	11.6 for the
third set. These values are shown by the vertical bars in Fig.
6�a�. We see that in the simulations the instabilities appear
exactly where they are predicted analytically. This gives us a
confidence that the used approximations are legitimate.

With simulations we can go beyond finding the location
of the instability onset. We can also find the finite dynamic
state after the instability develops. To understand the struc-
ture of this finite state, we present in Fig. 7 snapshots of the
distribution of the electric field for the first set of parameters
at j=0.12. Analyzing these snapshots, we conclude that the
instability leads to the state in which the oscillating phase is
a superposition of two modes,

��,n�x� = �$1,0 + i$1,1 cos���n − 1/2�/N��cos��x/Lx� ,

where the amplitude of the nonuniform mode, $1,1, continu-
ously grows starting from zero at the instability onset.

VI. SUMMARY

In conclusion, we found that dynamical states synchro-
nized by the internal cavity resonance are prone to two very
different instabilities. The short-wavelength instability devel-
ops for states which have regions of negative time-averaged
Josephson coupling. In particular, the homogeneous state in
stacks with modulated Josephson coupling typically has this
type of instability. The homogeneous state in the external
magnetic field H��0 / �sLx� has this type of instability close

FIG. 6. �Color online� Probing the long-range instability using
numerical simulations of the coarse-grained model. �a� The current-
voltage dependences for three sets of parameters below the reso-
nance voltage V1=4�. The horizontal arrows mark onsets of insta-
bilities in simulations and the vertical bars mark the theoretical
estimates described in the text. The instability leads to appearance
of a small additional bump in the current-voltage dependence. �b�
The time evolution of the difference between the bottom and top
phases at the left edge. One can see that for j"0.121 this difference
decays with time indicating stability of the homogeneous state
while for j#0.120 this difference remains finite. The inset shows
the blowup plot of the long-time decay of the phase differences for
stable states. The stripelike appearance of the curves is due to the
rapid oscillations with the Josephson frequency.

FIG. 7. �Color online� Snapshots of the distribution of the electric field for the steady state in the unstable region for the first set of
parameters in the previous figure at j=0.12 over the half period of the Josephson oscillations. One can see the contribution from the
nonuniform mode.
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to the resonance and the instability range widens with de-
creasing field. The long-wavelength instability appears due to
the parametric resonance excitation of the fast modes at finite
wave vectors. The instability criterion depends on the rela-
tion between the damping of the homogeneous mode and
modes at finite wave vectors. Finite-height stacks are stable
sufficiently close to the resonance. The instability region
typically shrinks with increasing in-plane dissipation.
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APPENDIX: NUMERICAL SIMULATIONS AND
COARSE-GRAINING PROCEDURE

For numerical simulations it is convenient to present the
dynamic equations in the form of the time-evolution equa-
tions for the reduced c-axis electric fields �en�, phases ��n�,
in-plane supermomenta �kn�, and magnetic fields �hn�,

�en

��
= − 
cen − g�u�sin �n +

�hn

�u
, �A1�

��n

��
= en, �A2�


ab
�kn

��
= − �kn + hn − hn−1� , �A3�

hn = �2� ��n

�u
− kn+1 + kn� . �A4�

The units in these equations are different from units used for
analytical calculations: unit of length is the Josephson length
�J, unit of supermomentum is 1 /�J, unit of magnetic field is

�0 / �2���2�, and unit of electric field is �0�p / �2�cs�. All
parameters are assumed to be y independent. Therefore we
only probe instabilities uniform in this direction. We also
neglected the layer-charging effect, 	=0. Above equations
are solved for stack containing N junctions with 0�u�Lx
assuming simple nonradiative boundary conditions at the
edges, kn=0, ��n /�u=% I /2�2 at u=0,Lx, where I= jLx is
the total transport current

Solution of these equations is implemented using the fol-
lowing implicit numerical scheme.

�1� Space and time discretizations are performed using a
staggered grid. For coordinate, �n�u ,�� and en�u ,�� are de-
fined at the points u= �j−1 /2�du while kn�u ,�� and hn�u ,��
are defined at the points u= jdu, see Fig. 8. For time, en is
defined at �=md� while �n, kn, and hn are defined at �
= �m+1 /2�d�.

�n,j
m+1/2 = �n��j − 1/2�du,�m + 1/2�d�� ,

en,j
m = en��j − 1/2�du,md��, 1� j � J ,

kn,j
m+1/2 = kn��j − 1�du,�m + 1/2�d�� ,

hn,j
m+1/2 = hn��j − 1�du,�m + 1/2�d��, 1� j � J + 1.

�2� We discretize equations as

en,j
m+1 − en,j

m

d�
= − 
c

en,j
m+1 + en,j

m

2
− gj sin �n,j

m+1/2 +
hn,j+1

m+1/2 − hn,j
m+1/2

du
,

�A5�

�n,j
m+3/2 − �n,j

m+1/2

d�
= en

m+1, �A6�

kn,j
m+3/2 − kn,j

m+1/2

d�
= −

1


ab
� kn,j

m+3/2 + kn,j
m+1/2

2
+

hn,j
m+3/2 + hn,j

m+1/2

2

−
hn−1,j

m+3/2 + hn−1,j
m+1/2

2
� , �A7�

hn,j
m+3/2 = �2��n,j

m+3/2 − �n,j−1
m+3/2

du
− kn+1,j

m+3/2 + kn,j
m+3/2� . �A8�

�3� The first two equations allow for direct time advance
of en,j and �n,j

en,j
m+1 = � 1

d�
+

c

2
�−1�� 1

d�
−

c

2
�en,j

m − gj sin �n,j
m+1/2

+
hn,j+1

m+1/2 − hn,j
m+1/2

du
� ,

�n,j
m+3/2 = �n,j

m+1/2 + d�en
m+1.

�4� Substitution of hn,j
m+3/2 and hn−1,j

m+3/2 from Eq. �A8� into
Eq. �A7� leads to the tridiagonal linear system for kn,j

m+3/2,

1

2

n

n+1

N+1
N

1 2

1 2

n-1
j+1j

j

J+1
Jj-1 j+1

�n,j , en,jkn,j hn,j

FIG. 8. �Color online� Illustration of the staggered grid used for
numerical solution of the dynamic Eqs. �A1�–�A4�.
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�2kn+1,j
m+3/2 − �1 +

2
ab

d�
+ 2�2�kn,j

m+3/2 + �2kn−1,j
m+3/2

= �1 −
2
ab

d�
�kn,j

m+1/2 + �2�n,j
m+3/2 − �n,j−1

m+3/2 − �n−1,j
m+3/2 + �n−1,j−1

m+3/2

du

+ hn,j
m+1/2 − hn−1,j

m+1/2

for n=2, . . . ,N with k1,j
m+3/2=0; kN+1,j

m+3/2=0. Solving this sys-
tem, we advance kn,j

�5� After finding kn,j
m+3/2, we update hn,j

m+3/2 using Eq. �A8�.
The long-range instabilities are only expected for very tall
stacks N�1000 which are very difficult to simulate directly.
To probe these instabilities, we use the coarse-grained model.
Assuming that the perturbations are smooth in z direction we
introduce a discretization step �z containing many junctions,
�z�1, and write coarse-grained equations only for junctions
with n=�zm,

�em

��
= − 
cem − g�u�sin �m +

�hm

�u
,

��m

��
= em,

�km

��
= −

1


ab
�km +

hm − hm−1

�z
� ,

hm = �2� ��m

�u
−

km+1 − km

�z
� .

Transforming variables, u=�zũ, hm= h̃m�z, we arrive to origi-
nal Eqs. �A1�–�A4� with replacements u→ ũ, hm→ h̃m, and
�→�cg=� /�z=� /�zs. Therefore, simulations of the same
model with the smaller parameter � is equivalent to coarse
graining and allows us to explore the long-range instabilities
in very tall stacks. Renormalization implies that the stack
width is now measured in units �J�z. The effective stack
height is given by N=�zNcg, where Ncg is the total number of
the c-axis slices in the coarse-grained model. Having in mind
to probe the long-range stability of the kink state, we use the
modulation function g�u�=sgn�u−Lx /2�. With such modula-
tion function the system is stable with respect to the short-
scale perturbations
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