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Theory and simulations on strong pinning of vortex lines by nanoparticles
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The pinning of vortex lines by an array of nanoparticles embedded inside superconductors has become the
most efficient practical way to achieve high critical currents. In this scenario, pinning occurs via trapping of the
vortex-line segments, and the critical current is determined by the typical length of the trapped segments. To
verify analytical estimates and develop a quantitative description of strong pinning, we numerically simulated
isolated vortex lines driven through an array of nanoparticles. We found that the critical force grows roughly
as the square root of the pin density and that it is strongly suppressed by thermal noise. The configurations of
pinned lines are strongly anisotropic; displacements in the drive directions are much larger than those in the
transverse direction. Moreover, we found that the roughening index for the longitudinal displacements exceeds
1. This indicates that the local stresses in the critical region increase with the total line length and that the elastic
description breaks down in the thermodynamic limit. Thermal noise reduces the anisotropy of displacements in
the critical regions and straightens the lines.
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I. INTRODUCTION

The introduction of large-size nanoparticles of different
shapes has emerged as the best practical way to improve
the current performance of high-temperature superconductors.
While in the first superconducting cables, the critical currents
were limited by weak links, in the second-generation super-
conducting wires based on aligned YBa2Cu3O7 (YBCO) films,
this problem has been mostly resolved, and critical currents
are determined by vortex pinning. Impressive progress has
been made to enhance critical currents in these films using
both isotropic1–7 and columnar8–10 inclusions. In spite of this
progress, our understanding of strong pinning mechanisms
is far from satisfactory. Theoretical estimates describing the
pinning of vortex lines by an array of strong pins at low
temperatures were elaborated by Ovchinnikov and Ivlev.11

This theory was applied to describe the behavior of the critical
currents in the real YBCO films in Refs. 12 and 13. In
particular, frequently observed power-law decay of the critical
current as a function of the magnetic field with a power slightly
larger than 1/2 is naturally explained by this theory. More
recently, it was also argued that strong pins of unknown origin
determine critical currents at low magnetic fields in several iron
pnictide compounds.14 It is not clear, however, to what extent
available qualitative estimates describe the real situation. Due
to the obvious importance of strong pinning by large-size
inclusions for real superconducting materials, it is desirable
to elaborate a quantitative theory describing pinning in such
situations. Moreover, the very important issue of pinning sup-
pression by thermal fluctuations does not have any theoretical
description in the strong-pinning regime.

In this paper we consider the pinning of vortex lines in
a superconductor containing insulating inclusions with lateral
sizes larger than the coherence length. We focus on the pinning
of individual vortex lines corresponding to small magnetic
fields. Pinning occurs via the trapping of finite-size segments
of a vortex line11 with a typical length L as illustrated in Fig. 1.

The critical current is determined by the length of the trapped
segment L and the pin-breaking force Fp:

�0

c
jc ≈ Fp

L
. (1)

Therefore, in the strong-pinning regime, the critical-current
problem is mostly reduced to the evaluation of the trapped-
segment length L. In general, trapping of the vortex lines is a
complicated dynamic process controlled by the competition
between the pinning energy, line tension, and intervortex
interactions. Different approaches may be used to evaluate
the trapped-segment length. One can assume that the pinning
center always grabs a piece of the vortex line when it is
energetically favorable. This assumption implies that thermal
fluctuations facilitate local equilibration. In this case, the
parameters of the trapped configurations can be obtained from
the energy-balance estimates. We will call this type of trapping
the equilibrium regime. This energy-balance consideration
determines trapped configurations of static vortex lines pre-
pared by cooling in finite magnetic fields. However, such
consideration is not applicable to the more typical dynamic
scenario in which moving lines are trapped after the driving
force is slowly reduced to the critical value. In this case,
the line motion close to the critical force is a continuous
trapping-detrapping process limited by local instabilities. The
driven vortex can be captured when the line either directly
collides with a strong pin or passes sufficiently close to it. In
the second case, trapping may occur due to the long-range
pin-vortex interaction as a result of local instability.11 The line
remains trapped until the force acting from the pin does not
exceed the pin-breaking force. When the line finally stops, the
pinned configuration is expected to be very anisotropic because
the transverse pin-to-pin displacements which are determined
by trapping events are much smaller than the longitudinal
displacements limited by the pin-breaking criteria.
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FIG. 1. (Color online) Vortex line trapped by strong pinning
centers at (a) zero and (b) finite current.

To develop a quantitative picture and verify analytical
estimates, we explore in this paper the pinning of the vortex
lines by nanoparticles with extensive numerical simulations.
We study the dependence of the critical force on the density
of pins, the statistical properties of trapped lines including
average values, and the distributions of trapping length and
pin-to-pin displacements. We study long-range behavior of
line displacements in the direction of the driving force
and in the transverse direction. We also study in detail
the suppression of the apparent critical force by thermal
fluctuations and the temperature dependence of the trapping
parameters.

The paper is organized as follows. In Sec. II we de-
scribe parameters characterizing the interaction between a
vortex line and large-size pinning centers. In Sec. III we
present analytical estimates. This includes the formulation
of general conditions for stable trapped configurations in
Sec. III A and estimation of parameters of trapped lines in
equilibrium in Sec. III B and the case of dynamic trapping
in Sec. III C. In Sec. IV we describe the model used in our
numerical simulations. In Sec. V we present our numerical
results, including the zero-temperature case in Sec. V A
and the finite-temperature case in Sec. V B. In Sec. VI we
discuss our results and make preliminary comparisons with
experiments.

II. INTERACTION BETWEEN A VORTEX LINE
AND A PINNING CENTER

We consider first the essential parameters describing the
interaction of vortex lines with large-size pinning centers. The
vortex pinning energy due to an insulating spheroid inclusion
with the axes b and bz is given by15

Up ≈ 2bzε0Lp, Lp = ln(b/ξab), (2)

with ε0 ≡ �2
0/(4πλab)2. A very important parameter is the

pin-breaking force, the maximum force with which the pinning
center can attract the vortex line. In contrast to small defects,
the pin-breaking force for large-size defects is limited by the
line tension of the vortices. With increasing external force,
the tips of the vortex line slide along the surface of the
insulating inclusion until they meet near the equator and
reconnect, leading to the depinning of the vortex. For the

in-plane current in the anisotropic layered material, the upper
estimate for such a line-tension-limited force can be obtained
by considering the simple geometry of equally spaced pins
aligned along the c axis and neglecting the interaction between
vortex tips at the pin surface. In this case, evaluating the
external force at which the tips meet, we obtain the following
estimate:

Fp � (2ε0/γ ) ln(bz/ξmin), (3)

where γ is the anisotropy factor, ξmin = max(ξc,s), ξc is the
c-axis coherence length, and s is the interlayer period of a
layered superconductor. This force only weakly depends on
the size and shape of the pinning center.

The interaction of the vortex line with a remote pin is long
ranged due to the perturbation of the supercurrent flow around
the vortex by the pin:

Ui(r) ≈ − ε0Vp

π (1 − ny)r2
for b � r � λab, (4)

where Vp = (4π/3)bzb
2
x is the volume of the pinning center

and ni are depolarization factors which depend on the
parameter γ bz/b. In particular, in the case where bz > b/γ ,
which includes close-to-spherical inclusions,

nz = 1 − ζ 2

ζ 3
(tanh−1 ζ − ζ ) with ζ =

√
1 − b2

γ 2b2
z

,

and nx = ny = (1 − nz)/2.
Recently, it was demonstrated that magnetic force mi-

croscopy can be effectively used not only for imaging but
also for the manipulation of individual vortices.16 In principle,
this technique gives the possibility to measure the interaction
between a vortex line and an individual pinning center and
extract the relevant interaction parameters described in this
section.

III. ANALYTICAL ESTIMATES FOR THE TRAPPING
OF A VORTEX LINE

A. General conditions for a static pinned line

Consider a general vortex-line configuration trapped at the
points (un,zn). For simplicity, we assume that the forces from
the pins are applied locally at the points z = zn. In between
the trapped points zn < z < zn+1, the displacement obeys the
following equation:

ε1
∂2u
∂z2

+ f ex = 0, (5)

where f is the driving force applied along the x axis and ε1 =
(ε0/γ

2)L1 is the line tension with L1 being the logarithmic
factor L1 = ln(rmax/rmin).17 The solution for the displacement
is

u(z) = un + (un+1 − un)
z − zn

zn+1 − zn

− ex

f (z − zn)(z − zn+1)

2ε1
. (6)

104528-2



THEORY AND SIMULATIONS ON STRONG PINNING OF . . . PHYSICAL REVIEW B 84, 104528 (2011)

The force acting from the pin on the vortex line at z = zn is
given by

Fn = −ε1

[
∂u
∂z

(zn + 0) − ∂u
∂z

(zn − 0)

]
and can be evaluated as

Fn = −ex

f (zn+1 − zn−1)

2
− ε1

(
un+1 − un

zn+1 − zn

− un − un−1

zn − zn−1

)
.

(7)

The stability condition for the trapped line is given by

Fn < Fp for all n, (8)

while the critical state corresponds to the condition that at least
one local force reaches the pin-breaking force:

max
n

(Fn) = Fp. (9)

One simple consequence of Eqs. (7) and (8) is that for “behind”
sites, ux,n < ux,n−1,ux,n+1, the line-tension force adds to the
external force, meaning that they, on average, have shorter
trapping segments zn+1 − zn, zn − zn−1.

B. Equilibrium trapping

Consider the trapping of a single vortex line by strong-
pinning centers with a concentration np and pinning energy
Up [Eq. (2)]. Assuming local equilibrium, the typical trapping
length L and transverse displacement u are determined by the
energy-balance condition12

ε1
u2

L
= Up

and by the condition that the average number of impurities in
the trapping volume should be on the order of unity:

npu2L = 1.

These equations give

Leq =
√

ε1

npUp

, u2
eq =

√
Up

npε1
. (10)

Strictly speaking, the above conditions are obtained for zero
current. Assuming that the trapping length does not change
much when current is applied, we obtain an estimate for the
critical current for the equilibrium trapping:

�0

c
jc,eq ≈ Fp

Le

≈ Fp

√
npUp

ε1
. (11)

It is expected to increase with the pin density as
√

np.

C. Dynamic trapping

The equilibrium estimates for the trapping parameters
[Eq. (10)] are definitely valid for the line configurations
prepared by cooling at fixed field and at zero transport current.
However, it is clear that they cannot be applied to the vortex
lines in the critical state at low temperatures when moving lines
are trapped after the driving force drops below the critical value
and equilibration does not take place. The critical current in

FIG. 2. (Color online) Upper figures: A trapped vortex line in the
metastable regime (side and top views). The typical displacement
in the direction of the force ul is much larger than the typical
displacement in the perpendicular direction ut . Lower figure: A
visualization of the pinned line configuration obtained in simulations
(only a short section of the line is shown). Shadelike projections on
the axis planes illustrate line displacements in the different directions.
Short-scale line wiggling is due to the thermal noise. The definitions
of the trapping parameters Lt , ul , and ut are also illustrated.

such a dynamic regime is estimated in Ref. 11 for high fields
when the intervortex interactions are essential. These estimates
can be directly generalized to the trapping of individual vortex
lines at small fields.18 When the vortex line moves close to
the pinning center, it may be trapped, and the line remains
trapped until the force acting from the pin on the vortex line
does not exceed the pin-breaking force. In this regime, two
typical trapping distances, in the direction of motion, ul , and
in the transverse direction, ut , are very different and have
very different origins (see Fig. 2). These distances and the
trapped-segment length L are connected by the geometric
relation

npLulut = 1. (12)

The longitudinal trapping distance ul is determined by the
pin-breaking condition

ε1
ul

L
= Fp. (13)

This condition can be obtained from the x component of
Eq. (7), assuming that the two terms on the right-hand side
are on the order of the pin-breaking force.

104528-3



A. E. KOSHELEV AND A. B. KOLTON PHYSICAL REVIEW B 84, 104528 (2011)

The transverse displacement between the pins, ut , is
determined by the trapping events. The simplest assumption
is that in most cases trapping occurs when the lines directly
collide with the pins,18 meaning that ut ≈ b. This immediately
gives estimates for other trapping parameters,

ul =
√

Fp

npε1b
, L =

√
ε1

npbFp

, (14)

corresponding to the following result for the critical current:

�0

c
jc,tr = F 3/2

p

√
npb

ε1
. (15)

Note that in this situation the estimate is somewhat similar
to the result for the equilibrium case [Eq. (11)] and has
the same dependence on the pin density (∝√

np). The
physical assumptions behind the two estimates, however, are
completely different.

The simple assumption above, however, may underestimate
ut . Due to the long-range pin-vortex interaction [Eq. (4)],
a pinning center may capture the vortex line even without
direct collisions. When the line passes sufficiently close to
the pinning center, it may be trapped by this center due
to instability. To estimate the maximum transverse trapping
distance ut , we consider the interaction energy of a segment
of length L with a pinning center located at a distance R � b

(see Fig. 3):11

E(u) = ε1
2u2

L
− Aε0Vp

(R − u)2
,

where A = 1/[π (1 − ny)]. This gives the interaction force

F (u) = ε1
4u

L
− 2Aε0Vp

(R − u)3
.

Introducing the reduced variables

x = u

R
, W = Aε0LVp

2ε1R4
,

FIG. 3. (Color online) A trapped segment interacting with a
pinning center. The upper right plot illustrates the energy profile for a
value of R below which the trapping becomes energetically favorable
but separated by the energy barrier. The lower right plot illustrates
the energy profile near the trapping instability point.

we rewrite the energy and force as

E = ε1
2R2

L

[
x2 − W

(1 − x)2

]
,

F (x) = −ε1
4R

L

(
x − W

(1 − x)3

)
.

The equilibrium points are determined by

x(1 − x)3 = W.

The instability point corresponds to the value of W when
the equilibrium points vanish, which happens at W > Wmax =
max[x(1 − x)3] = 33/44. Therefore, the condition for the
instability can be written as

Aε0LVp

2ε1u
4
t

= 33

44
,

which determines the maximum trapping distance ut as

ut = 4

(
Aε0LVp

54ε1

)1/4

. (16)

The vortex line will be trapped by the pinning centers located
closer than this distance in the direction perpendicular to
the driving force. Note that the numerical coefficient in this
equation should not be taken too literally because it is only
correct for the simplest geometry illustrated in Fig. 3. Using
this result, we find from Eqs. (12) and (13) that

Ltr =
[

ε
5/4
1

npFp(ε0Vp)1/4

]4/9

, (17)

ul =
[

F
5/4
p

npε1(ε0Vp)1/4

]4/9

, (18)

ut =
[

ε2
0V

2
p

npε1Fp

]1/9

. (19)

This gives the following estimate for the critical current:

�0

c
jc,tr = n

4/9
p F

13/9
p (ε0Vp)1/9

ε
5/9
1

. (20)

Comparing this result with the critical current for the equi-
librium regime [Eq. (11)], we can see that the two regimes
are characterized by somewhat different dependences on the
parameters. However, dependences on the pin density appear
to be close; the exponent in the power law jc ∝ nα

p in this
dynamic-trapping regime is somewhat smaller than the power
1/2 for the equilibrium regime, α = 4/9 ≈ 0.444.

D. A typical pin-breaking force at finite temperatures

At finite temperatures, the line moves for all driving forces,
but for small forces, very slow motion occurs due to the rare
thermally activated jumps (creep regime). The creep and flow
regimes are separated by the effective critical force, which
can be evaluated using a velocity criterion. Such effective
critical force is criterion dependent and thus differs from
the sharply defined zero-temperature critical force of the
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depinning transition, but it has the advantage that it can be
directly compared with experimental estimates. We do not
consider creep in this paper, and our purpose is to evaluate
the suppression of this critical force by the thermal noise.
The main mechanism of thermal suppression is reduction
of the effective pin-breaking force. At finite temperatures,
the trapped vortex segment has a finite lifetime on the pin
even if the pinning force F is smaller than the maximum
pin-breaking force. To quantify this effect, we can introduce
the temperature-dependent force F̃p(T ) < Fp at which the
trapped segments are typically released from their pins.

To evaluate this force, we assume that the line motion in
the crossover region consists of segment jumps, meaning that
the average line velocity can be estimated as v ≈ ul/τ where
τ = τ0 exp [U (F )/T ] is the typical time during which the
vortex segment remains pinned and U (F ) is the typical energy
barrier for detrapping. When the force F acting from the pin
is only slightly smaller than the maximum pin-breaking force,
the barrier behaves as in the single-particle case,19 U (F ) =
aF Up(1 − F/Fp)3/2, where aF = 4

√
2F

3/2
p /(3Up

√|F ′′
p |) and

F ′′
p is the second derivative of the interaction force with respect

to the line displacement at the maximum-force point. The
velocity criterion for the effective critical force can be written
as ηv = Cf fc where η is the viscosity coefficient and Cf � 1.
At low temperatures, this gives us the following relation
for F̃p:

τ0

η
exp

[
aF Up

T

(
1 − F̃p

Fp

)3/2
]

≈ ul

Cf fc

.

Using the estimate fc ≈ F̃p/Lt and the geometric relation
Eq. (12) and assuming for simplicity that ut ≈ b, we obtain

F̃p(T ) ≈ Fp

[
1 −

(
T

aF Up

ln
η

Cf τ0F̃pnpb

)2/3
]

. (21)

We expect that at low temperatures the effective critical force
and trapping parameters can be roughly evaluated using the
simple replacement Fp → F̃p(T ).

IV. MODEL FOR NUMERICAL SIMULATIONS

To develop a quantitative understanding of the strong
pinning by an array of inclusions, we numerically simulated
motion of the vortex line described by the dynamic equation

η
∂u
∂t

= ε1
∂2u
∂z2

+
∑

j

F(u − Rj )δ(z − zj ) + exf + FT (z,t).

(22)

Here, f is the driving force along the x direction from the
current, (Rj ,zj ) are the random pin coordinates, FT (z,t) is the
Langevin thermal force

〈FT,α(z,t)FT,α′(z′,t ′)〉 = 2ηT δαα′δ(t − t ′)δ(z − z′),

and

F(u) = −∂U (u)

∂u

is the interacting force with a strong pin. We model the
interaction potential by the function

U (u) = −Upb2Gcut(u)

u2 + b2
, (23)

where the cutoff function, introduced for numerical con-
venience, is Gcut(u) = (1 − u2/R2

cut)
2 for u < Rcut and

Gcut(u) = 0 for u > Rcut with Rcut � b. An important feature
that was not taken into account in modeling before is the
long 1/u2 tail in the interaction potential. However, this
model does not describe the line-tension-limited pin-breaking
force. In our model, the pin-breaking force from an isolated
pin is given by Fp = (3

√
3/8)Up/b, which is achieved at

u = b/
√

3. The model in its original form has an unrealistic
feature. For improbable configurations in which many pins
are located at distances smaller than b, the vortex interaction
with such a cluster may increase without limit. This, of
course, does not happen in real superconductors. To bring our
model somewhat closer to reality, we renormalized the total
pin-vortex-interaction force Fv-p(u) = ∑

j F(u − Rj ) as

Fv-p → Fv-p
tanh(Fv-p/Flim)

Fv-p/Flim
,

such that the maximum force cannot exceed Flim. This
modification has only a minor influence on the interaction
of the vortex line with an isolated pin.

For numerical implementation of the model, we use the
reduced variables

u = bũ, z = ε1b
2

Up

z̃, t = ηε1b
4

U 2
p

t̃,

f = U 2
p

ε1b3
f̃, F̃(ũ) = ∂

∂ũ
Gcut(ũ)

ũ2 + 1
,

in which the equation takes the simpler form

∂ũ
∂t̃

= ∂2ũ
∂z̃2

+
∑

j

F̃(ũ − R̃j )δ(z̃ − z̃j ) + ex f̃ + F̃T (z,t)

(24)

with

〈F̃T ,α(z̃,t̃)F̃T ,α′ (z̃′,t̃ ′)〉 = 2T̃ δαα′δ(t̃ − t̃ ′)δ(z̃ − z̃′),
T̃ = T/Up.

In this dimensionless form, the equation depends only on
the reduced temperature and reduced pin density ñp =
(ε1b

4/Up)np. The condition of the strong-pinning regime
is np < Up/ε1b

4, corresponding to ñp < 1. For the typical
parameters γ = 5, bz = b = 10 nm, and np = (100 nm)−3 =
1015 cm−3, the reduced pin density can be estimated as
ñp ≈ npb4/(bzγ

2) ≈ 10−4. In simulations, we mostly used
F̃lim = 1. For an isolated pin, this gives the pin-breaking
force F̃p = tanh(3

√
3/8) ≈ 0.57. We also used R̃cut = 50 in

the cutoff function Gcut(ũ). We consider systems of size
Lx × Ly × Lz where Lz is the vortex-line length, Lx is the
size in the direction of line motion, and Ly the size in the
transverse direction.

One of our tasks is to compute the dependence of the critical
force on the density of the pinning centers. The problem of the
calculation of the steady-state critical force is not as trivial
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as it may appear. For a finite-size system, there is always
a metastable configuration giving the maximum depinning
force. Assuming that such a configuration is always reachable
from any initial condition at long times, this would be the
critical force we seek. In a large system, this configuration
is, however, determined by a rare, nontypical configuration
of pins. As a consequence, the maximum depinning force
slowly grows with the increasing system sizes Lx and Ly ,
meaning that it is not a self-averaging parameter for a fixed
line length Lz. To avoid this, a carefully chosen (anisotropic)
thermodynamic limit in all directions was proposed for d + 1
dimensions.20 The maximum depinning force of a very large
system is also very difficult to compute. Simulations of Eq. (24)
at zero temperature are not very suitable for this purpose
because when the external force is close to the critical value,
the vortex line is trapped forever in the first metastable state it
finds. It is not clear how representative this state is or how
close the corresponding critical force is to the maximum
value. In addition, neither the maximum critical force nor
depinning forces for a few accidental metastable states are
very interesting quantities from a practical point of view.
The maximum critical force is essentially a property of an
isolated vortex line. A more interesting quantity is the typical
pinning force for the finite density of the vortex lines. Indeed,
even at low densities when vortex-vortex interactions can
be neglected, we expect a typical pinning force rather than
an extreme non-self-averaging force value to determine the
observable critical current.

To evaluate a typical pinning force at zero temperature,
instead of the fixed-force approach, we employ fixed-velocity
simulations using the approach suggested in Ref. 21. Namely,
we replaced the fixed external force f̃ in Eq. (24) with a slowly
moving parabolic potential:

f → K[W (t) − ux(z,t)], W (t) = W0 + V t. (25)

Such a potential forces the vortex line to move with the average
velocity V . Every time the line finds a metastable pinned

state and stops, the dragging force starts to increase with
time until it exceeds the critical force for this state, and the
line resumes motion. This trick allows us to explore many
metastable states and to avoid the extreme value statistics of
the sample-dependent critical force. The typical critical force
is then evaluated as the average force acting on the vortex line
in the critical configurations,

fc = 〈〈K[W (t) − ux(z,t)]〉z〉t , (26)

where 〈· · · 〉t implies averaging over the local maxima of
the instantaneous force. The spring constant K and the drag
velocity V have to be sufficiently small so that they do not
influence the calculation of the critical force. We typically use
K ∼ 10−5–10−6 and V = 0.001–0.002. The spring constants
satisfy K ∼ L−2

z in each case, assuring a proper thermo-
dynamic limit for the critical force and associated critical
configuration,21 and the velocities are small enough to assure
a quasistatic stick-slip motion. Figure 4 (left) illustrates the
typical dependences of the force acting on the line on the
displacement of its center of mass for different pin densities
np and line lengths Nz.

We also explore the velocity-force dependences at finite
temperatures using the direct fixed-force simulations described
by Eq. (24). Even though the term critical force is widely
used in the experimental community, at finite temperatures the
concept of the critical force does not have an exact meaning
because the velocity is finite at all forces due to the thermal
creep. Nevertheless, one can still introduce the characteristic
force describing crossover between the flux-flow and flux-
creep regimes using some average-velocity criterion. At low
temperatures near the critical force, the line motion becomes
very uneven [see Fig. 4 (right)]. It spends considerable time
in metastable traps waiting for a strong fluctuation which
allows it to continue motion. Such line motion is illustrated
by animation.22 As a consequence, a proper averaging over
such events requires huge simulation times and/or averaging
over many realizations of the random potential. In addition to

FIG. 4. (Color online) Left: Representative dependences of the force acting on the line versus its center of mass location obtained using
the fixed-velocity simulations for different pin densities np and line lengths Nz. (The curves are marked by np/Nz.) The vertical segments
correspond to trapped states. The typical critical forces fc are obtained by averaging over the local maxima of these curves. Right: Examples
of the displacement-time dependences used to evaluate average velocities at fixed temperatures for the parameters shown in the plot and for
different forces. Each force is represented by three curves corresponding to different realizations of the random potential. The line motion
becomes more and more uneven with decreasing force.
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the critical force, we explore statistical parameters of trapping
which allow us to understand better the pinning mechanism.
We evaluated the average length of a trapped segment Lt and
typical displacements along the motion direction ul and in the
perpendicular direction ut . We studied the distribution of these
parameters and their evolution with temperature and force.
We also studied the long-range wandering of the line in the
direction of motion and in the transverse direction.

For a numerical solution, the reduced equation (24) has to
be discretized both in time and in the z coordinate. We typically
used dt = 0.05–0.1 and dz = 1 for the discretization steps. To
study finite-size effects, the equation was solved for different
numbers of z-axis slices Nz ≡ Lz/dz, ranging from 512 to
2048.

V. NUMERICAL RESULTS

A. Behavior at zero temperature

We systematically studied the behavior of the critical force
and the properties of trapped line configurations within a pin-
density range spanning two orders of magnitude from 2.7 ×
10−5 to 2.7 × 10−3. Figure 5 presents the dependences of the
critical force fc on the pin density np for different system
sizes Nz. We found that fc increases with np according to
the power law fc = f0n

α
p. For the power index, the fit gives a

value slightly smaller than 1/2 (α ≈ 0.48) and the coefficient
f0 ≈ 0.61. In fact, the square-root dependence fc ≈ 0.71

√
np

also provides a reasonable description of the data. The power
is, however, clearly larger than the value 0.44 suggested by
the dynamic-trapping estimates in the case in which trapping
occurs due to instabilities. For the used line lengths Nz � 512,
a noticeable finite-size effect becomes visible only for small
pin densities (np < 3 × 10−4).

To understand the statistical properties of trapped config-
urations, we plot in Fig. 6 the pin-density dependences of
the average trapping parameters defined in Fig. 2, the trapping
length Lt , and the pin-to-pin displacements along the direction
of force, ul , and in the transverse direction, ut . In the plot

FIG. 5. (Color online) The dependence of the critical force on
the pin density. The plot contains data obtained for different system
sizes, and the legend shows Nz/Lx/Ly . The finite-size effects in the
critical force are weak.

FIG. 6. (Color online) Summary of the pin-density dependences
of the trapping parameters for different system sizes. As in the
previous plot, the legend shows Nz/Lx/Ly . Upper plot: The depen-
dences of the average trapped-segment length Lt . For comparison, we
show the expected trapping length extracted from the critical force.
Lower plot: The pin-density dependences of the average pin-to-pin
displacements in the direction of the force (longitudinal) and in the
perpendicular direction (transverse). The longitudinal displacement
〈ul〉 has a considerable finite-size effect with respect to the line
length Nz.

Lt (np), we show the expected value of the typical trapped
segment extracted from the value of the critical force Lt,f =
Fp/fc. We can see that the real trapping segments extracted
from the configurations indeed closely follow the expected
values. We also see that the average trapping segments are
systematically smaller than the segments which determine the
critical force. This is a natural behavior because one can expect
that the critical force is determined by “weak spots” where
the trapping segments are longer than average along the line.
The difference, however, is not very significant. The trapping
length shows a weak but unexpected size effect: it slightly
decreases with increasing total line length. We found that the
product npLtulut , which in general is expected to be on the
order of unity, in fact, slowly decreases with np from ∼0.18
to ∼0.14.

From the plots of the pin-to-pin displacements, we can
see that the pinned configurations are strongly anisotropic;
the average displacement along the direction of the driv-
ing force ul significantly exceeds the displacement in the
transverse direction ut . This is consistent with the dynamic-
trapping picture described in Sec. III C. The difference grows
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FIG. 7. (Color online) Examples of distribution functions of
trapping parameters at one pin density and for different system sizes.

with decreasing pin density np. In addition, the longitudinal
displacement shows a significant size effect: it grows with an
increasing system size Nz. Further analysis shows that this is
an indication of growing local stresses with increasing line
length and suggests the destruction of the vortex lines by
the pinning potential in the critical state for sufficiently large
systems. This behavior is not anticipated by simple estimates.
It is interesting to note, however, that this size effect in ul does
not lead to a significant size dependence of the critical force.
On the other hand, the average transverse displacement ut

does not show any size effect. It slowly grows with decreasing
np from 1.24 at np = 0.0027 to 2.54 at np = 2.7 × 10−5.
As ut remains comparable with the defect size, the regime
in which the transverse trapping is determined by the long
1/r2 tail of the pin-vortex interaction is not quite realized.
This explains why the power index in the force–pin-density
dependence is larger than suggested by the metastable-regime
estimates which assume ut � 1. To obtain further insight into
the properties of trapped lines, we show in Fig. 7 examples
of the distribution functions of trapping parameters for a
fixed density np = 2.67 × 10−4 and different system sizes.
One can see that these distributions are characterized by long
exponential tails. There is a noticeable probability of finding
segments with very large ul and Lt . Note that the tails have
opposite size effects for these parameters; the probability of
finding a large ul increases with Nz while the probability of
finding a large Lt decreases with Nz. The last trend is opposite
to naive expectations.

To characterize the long-range displacements of the line,
we studied the behavior of the structure factors, the Fourier
transforms of the displacement correlation functions:

Sl,t (q) = 1

Nz

〈∣∣∣∣∣
Nz∑
z=1

ux,y(z) exp(−iqz)

∣∣∣∣∣
2〉

. (27)

Examples of these quantities are presented in Fig. 8 (left) for
two pin densities. Similar to local quantities, the long-range
displacements are also strongly anisotropic. Such anisotropic
scaling of the displacements is a general property of the
driven lines in the critical regime independent of the pinning
mechanism.23 For both components, we clearly observe two
regions of q, characterized by different power-law depen-
dences Sl,t ∝ q1+2ζl,t . For the smallest q’s, we found the
roughness exponents ζl ≈ 1.14 and ζl ≈ 0.45. The value
of ζt < 1 for the transverse direction corresponds to the
line displacements increasing as 〈[uy(z) − uy(0)]2〉 ∝ z2ζt at
large z. On the other hand, the value of ζl > 1 found for the
longitudinal displacements implies that the assumed elastic
approximation is not self-consistent in the thermodynamic
limit; the average local stress 〈(dux/dz)2〉 increases with the
line length Lz as L

2(ζl−1)
z . In this case, the longitudinal line

displacements grow quadratically 〈[uy(z) − uy(0)]2〉 = Clz
2

with the coefficient, increasing with the line length as Cl ∝
L

2(ζl−1)
z .24 This provides a natural explanation for the strong

size dependence of the longitudinal pin-to-pin displacement
ul in the lower plot of Fig. 6. The negative size effects for
the trapping lengths in the upper plot of the same figure can
also be understood. Growing local stress with increasing Nz

forces the line to travel longer distances in the longitudinal
direction, increasing the probability of finding a pin separated
by a smaller distance in the z direction.

The found exponents are slightly different from the values
ζl = 1 and ζt = 0.5 obtained in Ref. 23 from the approximate
functional renormalization group calculations. However, a
similar situation was found for elastic lines in a plane where the
numerically computed index ζ = 1.25 (Refs. 25 and 26) also
exceeds the predicted value ζ = 1.27 We see that the transverse
displacements somewhat reduce the exponent value in the
three-dimensional (3D) case. Since the small-q exponents
are expected to be universal, i.e., independent of the pinning
mechanism, our results suggest that the elastic description will
also break down for the weak-pinning case. Although we have
considered the linear approximation for the elastic forces, this
conclusion is expected to hold for the full nonquadratic energy
of the deformed vortex line.25

At larger q’s, we observe the regime where both compo-
nents behave as Sl,t = At,lq

−4, giving the short-scale indices
ζl = ζt = 3/2. This corresponds to displacements induced by
a short-range-correlated random force, and such behavior is
actually similar to the static Larkin regime for weak pinning.
However, the random forces in our case clearly have a very
different origin.

The crossover between different regimes occurs at
a wave vector that scales approximately as

√
np. This

allows us to approximately collapse the structure factors
at different pin densities into a single curve using the
scaling Sl,t (q) = n

−αl,t

p Gl,t (qn
−1/2
p ). We found that αl ≈ 1.32

104528-8



THEORY AND SIMULATIONS ON STRONG PINNING OF . . . PHYSICAL REVIEW B 84, 104528 (2011)

FIG. 8. (Color online) Left: Transverse and longitudinal structure factors of the line for Nz = 2048 and two densities of pins. Two regions
of power-law q dependences are clearly observed for both components. Right: Scaled structure factors for different pin densities.

and αt ≈ 0.9. These scaled dependencies are shown on
the right-hand side of Fig. 8. Scaling works better for the
longitudinal structure factor. This scaling is consistent with the
identification of the trapping parameter Lt (np) as a geometric
crossover length at qLt ∼ 1 between a short-distance
roughness regime with exponents ζl = ζt = 3/2 and a
large-distance universal regime with exponents ζt ≈ 0.45 and
ζl ≈ 1.14. This behavior is again very similar to the crossover
between the Larkin regime and the random-manifold regime
established for the case of weak collective pinning even
though disorder is not weak in the present case.

We can also see from Fig. 8 (left) that both structure factors
increase with the pin density for all wave vectors. This means
that, in contrast to elemental pin-to-pin displacements ul,t

plotted in Fig. 6, the line displacements at fixed z grow with
increasing pin density. This behavior can be easily understood.
The displacements at small distances are determined not only
by the behavior of ul,t but also by the behavior of the trapping
length Lt . All these parameters decrease with increasing pin
density, meaning that smaller displacements occur on a smaller
length scale. The net increase of the line displacements at fixed
z coordinate with increasing np is a consequence of a faster
Lt (np) decrease than that of ul,t (np) as can be seen from Fig. 6.

B. Dynamics at finite temperatures

In this section we consider the influence of thermal noise
on the dynamic response and configurations of vortex lines
interacting with strong pins. Figure 9 presents the temperature
evolution of the velocity-force dependences and trapping
parameters in the critical region for two very different pin
densities, np = 5.33 × 10−5 and np = 1.33 × 10−3. Again,
we use the pinning energy of a single pin as the temperature
unit. At finite temperatures, the critical force does not have an
exact meaning because the line velocity is finite at all forces
due to the thermal creep. Nevertheless, we can introduce a
typical force corresponding to the crossover between the flow
and creep regimes, similar to the voltage criterion widely used
in experiments. We use the criterion v = 0.05f for this force.
The first important observation is that, independently of the cri-
terion, the apparent critical force is quite strongly suppressed

by the thermal noise. For example, as we can see in Fig. 9, for
the small pin density np = 5.33 × 10−5 at a temperature only
5% of the pinning energy, the apparent critical force is already
suppressed about fourfold. As one can see from the trapping-
parameter plots, the longitudinal pin-to-pin displacement ul in
the critical region very rapidly decreases with the temperature
while the transverse displacement ut slightly increases with
the temperature. As a consequence, at some temperature they
become of the same order. The longitudinal displacement
typically has a nonmonotonic dependence on the driving force
and reaches a maximum at some force in the critical region (the
maximum-stress force). The trapping length decreases with
decreasing line velocity, and its value at v = 0.05f slightly
increases with the temperature.

Figure 10(a) shows the temperature dependences of the
apparent critical forces for a wide range of pin densities. We
can see that these dependences are quite similar. However,
plots of the relative critical forces in Fig. 10(b) clearly show
that thermal suppression weakens with increasing pin density.
This is consistent with the estimate for the temperature
renormalization of the effective pin-breaking force [Eq. (21)]
due to the np dependence under the logarithm. For illustration,
we also present the real-temperature scales on the top axes
of the plots in Figs. 10(a) and 10(b) computed for spherical
particles with b = 5 nm and typical YBCO parameters. This
scale, however, is very sensitive to the value of b. For example,
the liquid nitrogen temperature T = 77 K corresponds to the
reduced temperature T̃ ≈ 0.041 in the plot. For particles with
b = 10 nm, the same real temperature would correspond to
the much smaller value T̃ ≈ 0.011.

As we found approximately fc ∝ √
np at T = 0, according

to the estimate of Eq. (15), we also expect the relation
fc ∝ F

3/2
p . This means that, according to Eq. (21), we

expect the dependence [fc(T̃ )/fc(0)]2/3 = 1 − (βdpT̃ )2/3 with
βdp = (1/aF ) ln(np0/np). This is directly verified in Fig. 10(c)
where we observe the approximate linear dependencies of
[fc(T̃ )/fc(0)]2/3 versus T̃ 2/3. Moreover, as shown in the
inset, the coefficient βdp found from the linear fits for
different pin densities indeed has a logarithmic dependence
on np [βdp ≈ 1.6 ln(0.115/np)]. These observations provide
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FIG. 9. (Color online) Temperature evolution of the velocity-force dependences (bottom plots), lengths of trapped segments (top plots,
right axes), and pin-to-pin displacements (middle plots) for two very different pin densities, np = 5.33 × 10−5 (left) and 1.33 × 10−3 (right) in
the regions corresponding to crossover between flow and creep.

justification for our assumption that the reduction of the
typical pin-breaking force is the main source of thermal
suppression of the effective critical force.

We consider now the influence of thermal noise on the
long-range behavior of the line displacements. Figures 11(a)
and 11(c) present the evolution of the structure factor with
increasing temperature for the pin density np = 1.33 × 10−4.
We can see that the slope of the small-q dependences does
not change, indicating that the roughening indices ζl and
ζt are temperature independent. However, the coefficient is
significantly reduced for the longitudinal displacements and is
enlarged for the transverse displacements. Correspondingly,
as one can see from the line wandering plots shown in
Figs. 11(b) and 11(d), the components of displacements in
the critical region have opposite tendencies: the longitudinal
displacements decrease and the transverse displacements
increase with increasing temperature. As the longitudinal
displacements dominate, the lines become more straight in
the critical region. Another important observation is that
the random-force regime Sl,t ∝ q−4 at large q is rapidly
washed out by thermal noise for both components and is
replaced by the isotropic fluctuational line wandering Sl,t =
T/q2.

VI. DISCUSSION AND COMPARISON
WITH EXPERIMENT

Using the square-root fit of the pin-density dependence of
critical force in Fig. 5, we can restore the np dependence of

the critical force in real units:

fc = 1.9F 3/2
p

√
npb

ε1
. (28)

This coincides with the estimate of Eq. (15) which is obtained
assuming that the transverse trapping distance ut is on the order
of the pin size b. This does not greatly contradict our numerical
results because our average values of ut only slightly exceed
the pin size. Note that in our simulations the pin-breaking
force Fp is fixed by interaction with the pin while in real
superconductors, for large-size inclusions, it is determined
by the in-plane line energy [see Eq. (3)]. Substituting this
estimate, our result leads to the following estimate for the
critical force:

fc = Acε0

√
npb/γ ,

where, assuming ξc < s, we estimated Ac � 5.4[ln
(bz/s)]3/2[ln(Lt/s)]−1/2.

For preliminary comparison with experiment, we use
results of the recent Ref. 7 in which approximately spherical
(Y-Gd)2O3 particles with radii of ∼4 nm were embedded
into the YBCO films. The typical concentration of par-
ticles was 5 × 1016 cm−3. For estimates, we assume the
temperature-dependent London penetration depth as λab =
(140 nm)/

√
1 − (T/Tc)2 with Tc = 90 K and the anisotropy

γ = 5. Such parameters correspond to the reduced concen-
tration ñp ≈ 1.3 × 10−4. From the above zero-temperature
result, we estimate Ac ≈ 3.9 and the critical current jc ≈
1.7 × 107 A/cm2, close to the low-field experimental values
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(a) (b) (c)

FIG. 10. (Color online) (a) Temperature dependences of the effective critical forces for different pin densities and line lengths. (b) Relative
suppression of effective critical forces by thermal fluctuations for selected pin densities and line lengths. (c) Plots of [fc(T )/fc(0)]2/3 vs T 2/3

showing approximately linear dependences in agreement with Eq. (21). The inset shows the pin-density dependence of the coefficient βdp with
a logarithmic fit. Legends in (b) and (c) imply np/Nz. The top axes in (a) and (b) provide the approximate real temperature scales computed
for spherical particles with radius b = 5 nm, assuming λab = (140 nm)/

√
1 − (T/Tc)2 with Tc = 90 K.

of 5 K and 2.08 × 107 A/cm2. The reduced temperature
can be evaluated as T̃ ≈ (T/5.3 × 103 K)/[1 − (T/Tc)2]. At
55 K, this gives T̃ ≈ 0.017. According to Fig. 10(b), at
this temperature thermal suppression of the critical current
is expected to be around 50%. Taking this factor and the
temperature dependence of the parameters into account, we
expect a critical current jc ≈ 5.2 × 106 A/cm2, which again
is quite close to the experimental value of 6.22 × 106 A/cm2.
We can conclude that the our strong-pinning result for the
critical current is in reasonable agreement with experiment.

Our results show that the wandering of dynamically
pinned lines is strongly anisotropic; displacements in the

direction of motion are much larger than displacements in
the transverse direction. In principle, experimentally this can
be directly demonstrated using flux visualization techniques,
such as a scanning SQUID or Hall probes. With these
techniques, individual vortices can only be resolved at small
fields. Usually, statically pinned vortices are visualized after
cooling in a fixed magnetic field. Nevertheless, it should also
be possible to visualize shapes of the dynamically pinned
vortices near the boundary of the Bean profile, which is
formed when the magnetic field is applied after cooling
of a superconducting sample in zero field. We expect the
vortex field profiles to be strongly elongated along the

FIG. 11. (Color online) Typical evolution of the structure factors [(a) and (c)] and line displacements [(b) and (d)] with increasing
temperature for one pin density. Thermal fluctuations in the critical regime reduce the line displacements in the direction of drive and increase
the line displacements in the transverse direction.

104528-11



A. E. KOSHELEV AND A. B. KOLTON PHYSICAL REVIEW B 84, 104528 (2011)

direction of motion. The elongation length along the direc-
tion of motion is given by the longitudinal displacement
ul at a distance on the order of the London penetration
depth. This length is expected to decrease with increasing
temperature.

In conclusion, we developed a quantitative description of
individual vortex lines pinned by an array of nanoparticles. We
found that the critical force grows roughly as the square root
of the pin density. This result is consistent with qualitative
estimates, assuming that for our pin-density range, trapping
events mostly occur as a result of direct collisions with pinning
centers. The apparent critical force is strongly suppressed
by thermal noise. The relative suppression is reduced with
increasing pin density. The configurations of pinned lines are
strongly anisotropic; displacements in the drive directions
are much larger than those in the transverse direction.
The displacement anisotropy is rapidly reduced by thermal
noise mostly due to the rapid reduction of the longitudinal
displacements. This leads to straightening of the lines in the
critical region. Analyzing the behavior of the structure factors
at small wave vectors, we found that the roughening index
for the longitudinal displacements exceeds 1. This means that
the local stresses in the critical region increase with the line
length, indicating a breakdown of the elastic description in

the thermodynamic limit. The behavior of the structure factor
at large wave vectors for both directions is typical for the
displacement induced by random force. At finite temperatures,
this random-force regime is rapidly replaced by the thermal
displacements.
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