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Mesoscopic variations of local density of states in disordered superconductors
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We explore correlations of inhomogeneous local density of states (LDoS) for impure superconductors with
different symmetries of the order parameter (s wave and d wave) and different types of scatterers (elastic and
magnetic impurities). It turns out that the LDoS correlation function of superconductor always slowly decreases
with distance up to the phase-breaking length lφ and its long-range spatial behavior is determined only by the
dimensionality, as in normal metals. On the other hand, the energy dependence of this correlation function is
sensitive to symmetry of the order parameter and nature of scatterers. Only in the simplest case of s-wave
superconductor with elastic scatterers the inhomogeneous LDoS is directly connected to the corresponding
characteristics of normal metal. We found that in presence of pair-breaking scattering relative LDoS variations
increase with decreasing energy.
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I. INTRODUCTION

Classical theory of superconductivity for impure materials
deals with average quantities. Within the BCS approach the
average fundamental characteristics of s-wave superconductor
such as transition temperature, gap, and density of states are
not sensitive to potential disorder. This statement, known as
Anderson theorem, is, in fact, not rigid at all. In particular,
it is enough to introduce in s-wave superconductors some
amount of magnetic impurities and they suppress the transition
temperature and gap in the quasiparticle spectrum. Moreover,
in the case of more complex symmetry of the order parameter,
even elastic impurities depress superconductivity.

It is worth to note that average parameters do not com-
pletely describe properties of impure materials, because, in
addition, disorder induces random point-to-point variations of
all quantities. For instance, it is well known since 60’s that
the local density of states (LDoS) of normal metal near an
isolated impurity experiences so called Friedel oscillations at
the atomic scale.1

At the end of 70’s, beginning of 80’s, the theory of weak
localization was developed, which described the corrections
to average values of transport characteristics of impure
electron systems caused by the quantum interference of
electrons due to their multiple impurity scattering.2 Even
though these corrections of quantum origin were found to
be small in comparison to the corresponding classical values,
it was demonstrated that they have nontrivial dependencies on
temperature, frequency, and magnetic field that makes them
experimentally accessible. While the quantum interference
itself does not effect the average value of DOS, the nontrivial
corrections to this quantity appear when, in addition, the
interelectron interaction is taken into account.

During mid 80’s, the spatial variations of the LDoS,
conductivity, and other normal-metal properties have been
revisited within the framework of the mesoscopic physics.3

It was found that the quantum interference effects also lead
to appearance of nontrivial corrections to inhomogeneous
characteristics, for instance, to the LDoS correlation function.7

In contrast to the “fast” atomic-scale contribution of the
Friedel oscillations, the latter manifest themselves in smooth

long-range spatial behavior of the LDoS correlation function
as the “slow” power (or logarithmic in 2D case) decay on
the distances beyond the mean-free path l and up to the
phase-breaking length lφ � l (each of them is much larger than
interatomic distances). One can recognize the physical origin
of such phenomenon in spirit of the qualitative explanation
of the weak localization corrections given in terms of self-
intersecting trajectories.2

The electron motion in impure metal has the diffusive
character. For every pair of remote points r and r′ with finite
probability, one can find the self-intersecting quasiclassical
trajectory that starts from the point r, passes close to the point
r′, and returns back to the initial point. An important property is
the existence of the opposite returning trajectory, which comes
out from the point r′, passes close to the point r, and returns to
the point r′ following roughly the same route [see Fig. 1(a)].
These two trajectories have two long joint pieces where the
electron motion is accompanied by the multiple scattering
on the same impurities. When time-inversion symmetry is
present, particles can move along these trajectories in the same
or in the opposite directions. Looking at Fig. 1(a), one can
see that for each trajectory there are the entry and the exit
points of the joint routes (marked by circles) separated by the
distances R1 and R2 from the trajectory origin. Existence of
such diffusive trajectories leads to long-range correlation of
different properties, in particular, the local density of states.

Quantitatively, this phenomenon can be described by
the standard Green’s function diagrammatic technique. The
diagram describing the long-range correlations is shown in
Fig. 1(b). It contains either two diffusons or two cooperons.7

The two-diffuson diagram describes the process in which the
particles move in the same direction within the two joint
routes, while the two-cooperon diagram corresponds to the
motion of particles in the opposite directions. The Cooperon
(diffuson) as the element of the diagram describes the process
of coherent scattering of electrons moving along the joint
routes. The blocks of three Green’s functions (two retarded
and one advanced, or vice versa) are known as the Hikami
boxes. They describe the incoherent motion of electrons in the
domains close to the entry and exit points r and r′, where their
routes divaricate.
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FIG. 1. (Color online) (a) Returning quasiparticle trajectories
leading to the long-range correlations between the points r and r′.
The trajectories are characterized by two pieces of long joint routes
within which the diffusing particles move either in the same or in the
opposite directions. (b) Two-diffuson diagram describing long-range
part of the LDoS correlation function. Upper (lower) loop represents
GR(E,r′,r′) [GA(E,r,r)] correspondingly. Shaded box represents
diffuson. The two-cooperon contribution can be obtained by reversing
arrows direction in one of the loops.

Recently, STM measurements of the LDoS spatial varia-
tions have emerged as a new powerful tool to characterize
intrinsic inhomogeneities in impure superconductors.4,5 These
measurements revealed both rapid oscillations with typical
wave vectors connecting characteristic points at the Fermi
surface (the quasiparticle scattering interference patterns)
and smooth LDoS variations. In particular, studying the
oscillating contribution provides one of the ways to establish
the symmetry of the superconducting order parameter. The
available theoretical description of these experiments is mostly
based on the single-impurity approximation,6 which becomes
insufficient at noticeable impurity concentration.

Our purpose in this article is to understand the behavior
of inhomogeneous LDoS of impure superconductors with
different order parameter symmetries at the length scales
beyond the mean free path. We develop a theory that properly
accounts for the collective effects appearing during coherent
quasiparticle scattering on impurities. We demonstrate that the
energy dependence of the long-range correlation function of
superconductor is indeed sensitive to symmetry of the order
parameter and nature of scatterers. The inhomogeneous LDoS
of superconductor can be directly mapped on that one of a
normal metal only in the simplest case of s-wave superconduc-
tor with elastic scatterers. Presence of magnetic impurities or

more nontrivial symmetry of the order parameter results in the
considerable complication of the LDoS correlation function
energy dependence while the spatial variations in all cases do
not change.

The article is organized in the following way. In Sec. II,
we start our discussion introducing the Green’s function
formalism for study of the inhomogeneous LDoS correlation
function and refresh to a reader its properties in normal metal.
Section III is devoted to study of the LDoS correlation function
in s-wave superconductors and it consists of two subsections
treating cases with only elastic and both elastic and magnetic
impurities. In Sec. IV, we consider the problem in the case of
superconductor with d-wave symmetry of the order parameter
and elastic impurities. The cumbersome technical details
of calculation of the elements of diagrams for correlation
function, such as Hikami blocks, cooperons, and traces of
large number of Pauli matrices make the appendices.

II. INHOMOGENEOUS LDOS IN NORMAL METALS

The case of normal metal represents a natural starting point
and a convenient reference. The effects of multiple scattering
and quantum coherence on spatial correlations of LDoS in
disordered normal metals were considered in Ref. 7. It was
found that two different contributions can be distinguished in
the LDoS correlation function. The short-range contribution
represents the Friedel oscillations modified by multiple im-
purity scattering. The second long-range contribution appears
due coherent diffusive propagation of normal quasiparticles.
In the following, we will focus namely on this long-range
term and, for completeness, we start with reproduction of its
calculation.

Our purpose is to evaluate the LDoS correlation function at
the same energy

L(n)(r − r′,E) = 〈N (n)
e (E,r)N (n)

e (E,r′)
〉− 〈N (n)

e (E)
〉2

. (1)

As the LDoS per spin is related to the retarded Green’s function
GR(E,r,r) by the standard relation

N (n)
e (E,r) = −Im[GR(E,r,r)]/π, (2)

this quantity can be expressed via retarded and advanced
Green’s functions:

L(n)(r − r′,E) = 1

2π2
{Re[〈GR(E,r,r)GA(E,r′,r′)〉

− 〈GR(E,0,0)〉〈GA(E,0,0)〉]
− Re[〈GR(E,r,r) GR(E,r′,r′)〉
− 〈GR(E,0,0〉2]}, (3)

where 〈. . .〉 implies averaging over impurities distribution. One
can use this presentation for impurity averaging within the
standard Green’s function approach. We will assume weak
impurity scattering (Born limit). The contributions to the LDoS
correlation function can be represented as diagrams consisting
of two loops connected by impurity lines.

The long-range contribution to the LDoS correlation func-
tion is given by the sum of the two-diffuson and two-cooperon
diagrams, L(n) = L(n)

(2D) + L(n)
(2C), see Fig. 1(b). Both of them

give the same contributions, which can be approximately
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written as

L(n)
(2D)(r−r′,E) = L(n)

(2C)(r−r′,E) ≈ |B (E)|2
2π2

C2
n (r−r′), (4)

where Cn(r − r′) is the cooperon,

B(n) (E) =
∫

dR1

∫
dR2Ḡ

R(R1)ḠA(R1−R2)ḠR(R2) (5)

is the “Hikami box,” and

ḠR,A(R)≡〈GR,A(E,r,r+R)〉=
∫

dDp
(2π )D

exp(ipR)

E−εp ± i/2τ

are the averaged Green’s functions with D being the space
dimensionality. Here, τ is the elastic scattering time, εp =
vF (p − pF ), vF and pF are the Fermi velocity and momentum,
respectively. Integration in Eq. (5) gives a very simple result:

B(n) (E) = 2πiντ 2 (6)

with ν = 〈N (n)
e (E,r)〉 as the average value of LDoS.

Hence the long-range behavior of the LDoS is completely
determined by the cooperon Cn(r − r′) whose Fourier trans-
form is well known:2

Cn(q) = 1

2πντ
fD(lq) with fD(lq) ≈ D

l2q2
for lq � 1, (7)

where l = vF τ is the mean-free path. In real space,

Cn(r) = D

2πντ lD
f̃D(r/ l). (8)

At r � l,

f̃D(r) ≈ 1

π

{
ln(lφ/r) for D = 2

3/4r for D = 3
. (9)

For the 2D case, the logarithmic divergency is cut off at q ∼
1/lφ , where lφ is the phase-decoherence length. As the Green’s
functions decay at the distances of the order of the mean-free
path, in order to evaluate the long-range behavior |r − r′| �
l, we replaced in Eq. (4) arguments of both cooperons with
|r − r′|.

Substituting the results (6) and (8) into Eq. (4), we obtain
the long-range asymptotic expression of the LDoS correlation
function,7

L(n)(r − r′,E) = (2ντ 2)2C2
n (r − r′)

= ν2 aD

(kF l)2D−2 f 2
D(|r − r′|/l) (10)

with a2 = 4 and a3 = 4π2. From this result, we see that LDoS
variations are small in comparison with the average DoS by
the parameter (kF l)D−1. It is important to stress that in contrast
to the short-ranged Friedel oscillations, they decay slowly at
large distances up to lφ , as ln2(lφ/r) for the 2D case and 1/r2

for the 3D case.

III. s-WAVE SUPERCONDUCTORS

A. Potential impurities

We start consideration of superconducting state with the
simplest situation of purely potential scattering and s-wave
symmetry of the order parameter. In this case, the inhomoge-
neous LDoS is directly related to its normal-state counterpart.

Indeed, using eigenstates expansion, the normal-state LDoS
can be represented as

N (n)
e (E,r) =

∑
i

|ψi(r)|2δ(E − Ei), (11)

where ψi(r) are eigenfunctions and Ei are eigenenergies
of the quasiparticle states. In case of potential scattering,
the corresponding eigenenergies in superconducting state
become ±

√
E2

i + 	2 where 	 is the gap parameter, and
the two-component Bogoliubov wave function of quasi-
particle state in superconductor [Ui,±(r),Vi,±(r)] is propor-
tional to the normal-state wave function [Ui,±(r),Vi,±(r)] =
(ui,±,vi ,±)ψi(r), where ui,± and vi,± are coordinate-
independent constants ui,α = (α/

√
2)
√

1 + αEi/
√

E2
i + 	2,

vi,α = (1/
√

2)
√

1 − αEi/
√

E2
i + 	2, |ui,±|2 + |vi,±|2 = 1.8 A

quantity commonly evaluated for superconductors is the
density of states for excitations, which in normal state cor-
responds to symmetric combination N (n)

ex (E,r) = N (n)
e (E,r) +

N (n)
e (−E,r). The excitation LDoS in superconducting state,

N (s)
ex (E,r), can be represented in the form of eigenstate

expansion as

N (s)
ex (E,r) =

∑
i,α=±1

[|Ui,α(r)|2 + |Vi,α(r)|2]δ
(
E−α

√
E2

i +	2
)

=
∑

i,α=±1

|ψi(r)|2 |E|√
E2 − 	2

δ(Ei − α
√

E2 − 	2)

= |E|√
E2 − 	2

N (n)
ex (
√

E2 − 	2,r) (12)

(in the second line we change the variable of the δ function).
Such a simple connection between the normal and supercon-
ducting LDoS is one of consequences of the Anderson theorem
and it provides the following relation between the normal-state
and superconducting LDoS correlation functions:

L(s)
ex (E,r)

/[
ν(s)

ex (E)
]2 = L(n)

ex (
√

E2 − 	2,r)/(2ν)2, (13)

where ν(s)
ex (E) = 2νE/

√
E2 − 	2 is the average supercon-

ducting DoS for excitations and L(n)
ex (E,r) ≈ L(n)(E,r) +

L(n)(−E,r). Even though in the following we only consider
L(s)

ex (E,r), for completeness, we also present a useful general
relation for the electronic LDoS,

N (s)
e (E,r) =

∑
i,α=±1

|Ui ,α(r)|2δ(E − α

√
E2

i + 	2
)

=
∑
α=±1

E+α
√

E2−	2

2
√

E2 − 	2
N (n)

e (α
√

E2−	2,r). (14)

In particular, this general relation allows immediately to
reproduce the single-impurity result reported for the s-wave
case in Ref. 6.

Even though the long-range tail of LDoS for disordered
s-wave superconductors can be immediately obtained from
the normal-state result, it is useful, nevertheless, to rederive
it formally within the Green’s function approach. This will
allow us to generalize such an approach later for less trivial
situations for which the above argument does not work any
more.
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The long-range contribution to the LDoS correlation func-
tion is again determined by the diagram shown in Fig. 1(b), but
both the Green’s functions and cooperons now have the matrix
structure. In order to calculate them, it is convenient to use
Nambu formalism decomposing the Green’s functions over
Pauli matrices τ̂ j and the cooperons over the direct product
τ̂ k ⊗ τ̂ k′

of them:

GR,A → G
R,A
αβ = g

R,A
j τ

j

αβ, (15a)

C(s) → C
(s)
αβ,γ δ = C

(s)
kk′τ

k
αβτ k′

γ δ. (15b)

We assume summation with respect to repeated indices. Let us
note that the Cooperon 4 × 4 matrix C

(s)
kk′ in fact has the 2 × 2

block structure:21,22

C
(s)
kk′ =

[
Ĉ

(s)
A 0

0 Ĉ
(s)
B

]
. (16)

For potential scattering, the averaged superconducting
Green’s functions are given by

ĜR,A(E,p) = αR,A(Eτ̂ 0 + 	τ̂ 1) + εpτ̂
3

(αR,A)2(E2 − 	2) − ε2
p

,

(17)

αR,A = 1 ∓ i

2τ
√

E2 − 	2
,

and for real 	, they do not contain τ̂ 2 component.
In this formalism, it is convenient to deal with LDoS for

excitations N (s)
ex , which is related to the trace of the Green’s

function:

N (s)
ex (E,r) = − 1

π
Im[Tr ĜR(E,r,r)]. (18)

Comparing this equation with the previous normal state LDoS
definition (2), one can see that N (s)

ex (E,r) has an additional fac-
tor two since it contains both electron and hole contributions.
In particular, the average LDoS for excitations is given by ν(s)

ex .
The corresponding expression for the two-cooperon diagram
can be represented using the Pauli-matrices decomposition:

L(s)
ex(2C) = 4

2π2
UkmU ∗

k′m′C
(s)
kk′C

(s)
mm′ , (19a)

Ukm = 1
2 Tr(τ̂ i τ̂ k τ̂ nτ̂mτ̂ j )B(s)

inj , (19b)

B(s)
inj =

∫
dR1

∫
dR2g

A
i (R1)gR

n (R1−R2)gA
j (R2). (19c)

The computational details of superconducting cooperon
components are presented in Appendix A 1. It turns out that its
singular components are related to the normal-state cooperon
(7) as

C
(s)
ij (q) = E2

E2−	2

(
−	

E

)i+j
Cn(q)

2
, for i,j = 0,1, (20a)

C
(s)
33 (q) = Cn(q)/2. (20b)

One can see that in the limit of normal metal, 	 → 0, the
only nonzero components remained are C

(s)
00 and C

(s)
33 .

Computing the trace of five Pauli matrices in Eq. (19b),
taking into account (i) the symmetry of B(s)

inj with respect to
indices i and j and (ii) the absence of τ̂ 2 components in all

decompositions (see Appendix C), we obtain

Ukm = δm0B(s)
iki + δk0B(s)

imi + (δmk − 2δm0δk0)B(s)
i0i

+ 2
[
(1 − δk0)B(s)

0mk + (1 − δm0)B(s)
0km

− (1 − δn0)B(s)
0nn(δkm − 2δk0δm0)

]
,

where summation with respect to the index i = 0,1,3 is
assumed in the first three terms. The components of the Hikami
boxes are computed in Appendix A 2. For i,j,m = 0,1,

B(s)
imj =− iπντ 2

2

E3
(√

E2−	2 + 3i
2τ

)
(E2−	2)3/2

(√
E2−	2 + i

2τ

) (	

E

)i+j+m

and

B(s)
033 = − iπνEτ 2

2
√

E2 − 	2
,

B(s)
303 = − iπνEτ 2

2
√

E2 − 	2

√
E2 − 	2 − i

2τ√
E2 − 	2+ i

2τ

.

Due to the specifics of the cooperon C
(s)
ij (q) structure for i,j =

0,1, seen from Eq. (20a), we need only the combination U00 +
U11 (	/E)2 − 2 (	/E) U01 for which we find a very simple
relation,

U00 + U11(	/E)2 − 2(	/E)U01 = U33[1 − (	/E)2],

and for U33, we derive

U33 = −2iπντ 2 E√
E2 − 	2

.

Collecting terms, we finally obtain for the total correlation
function, L(s)

ex = L(s)
ex(2C) + L(s)

ex(2D),

L(s)
ex (r − r′,E) = 4

π2
|U33|2

{[
1 −

(
	

E

)2]2[
C

(s)
00 (r − r′)

]2
+ [C(s)

33 (r − r′)
]2}

= 2

(
2ντ 2E√
E2 − 	2

)2

C2
n (r − r′). (21)

This result explicitly confirms the relation (13) based on
Anderson-theorem arguments.

B. Magnetic impurities

In this section, we evaluate the LDoS correlation function
for s-wave superconductor with magnetic scatterers. Since the
seminal paper of Abrikosov and Gor’kov,9 it is established that
the magnetic impurities dramatically suppress superconductiv-
ity and strongly influence the quasiparticle density of states.
The original mean-field approach (AG theory) suggested
that the hard gap in the average DoS is not eliminated by
magnetic impurities. This hard gap decreases with increasing
the magnetic-impurities concentration and vanishes at certain
critical concentration so that the gapless superconducting state
exists within small range of concentrations. More accurate
later treatments beyond the mean-field approach11,12 have
demonstrated that the low-energy quasiparticle states are
in fact generated for all magnetic-impurities concentrations
meaning that, strictly speaking, the hard gap is eliminated by
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any amount of magnetic impurities. For small concentrations,
however, the average DoS at low energies have exponentially
small tail.

Formally, in the presence of magnetic scattering the Green’s
function can be still presented in the form similar to Eq. (17),
but within the mean-field approach, the renormalized energy
and gap now are determined from the self-consistent tran-
scendental equations.9 This result is usually obtained taking
into account the spin structure of the superconductive Green’s
function,10 which means the additional increase of the matrix
dimensionality to 4 × 4. In the calculation of the two-cooperon
diagrams in Nambu representation (19a), the number of Pauli
matrices in traces is already large. That is why, for the sake of
simplicity, we will consider below magnetic scatterers as Ising
impurities oriented in the same direction. This allows us to
preserve 2 × 2 matrix structure of the Green’s function, which
significantly simplifies calculations. The physical picture
remains practically identical to the case of isotropic magnetic
impurities. Even for a such minimum model describing
the pair-breaking scattering, the calculations and results
become rather cumbersome. Technically similar work has been
done in Ref. 13 where suppression of the transition temperature
by magnetic impurities in combination with Coulomb effects
has been investigated. This thermodynamic problem required
summation of ladder diagrams with elastic and magnetic
impurity lines in the Matsubara-frequency presentation. In
principle, the cooperon components at real energies could be
obtained from the results of this work via analytic continuation.
However, this procedure is not trivial at all.

The long-range LDoS correlation function is still defined
by Eq. (19a) but the Green’s functions, cooperons, and Hikami
boxes are considerably modified by magnetic scattering. De-
tailed derivations of these objects are presented in Appendices
B1 and B2. Instead of Eq. (17), Green’s functions are given by

ĜR,A (p) = Ẽ±τ̂ 0 + 	̃±τ̂ 1 + εpτ̂
3

Ẽ2± − 	̃2± − ε2
p

(22)

with the renormalized energy and gap, respectively,

Ẽ± = E ± iη±

2τ0

√
η2± − 1

, (23a)

	̃± = 	 ± i

2τ1

√
η2± − 1

, (23b)

where 1/τα = 1/τ + (−1)α/τm, τ and τm are the potential and
magnetic scattering times. Here and below, the subscript “+”
(“−”) corresponds to the retarded (advanced) components.
The parameter η± = Ẽ±/	̃± has to be determined from the
equation

η±

⎛⎝1 ∓ i

τm	

√
η2± − 1

⎞⎠ = E

	
. (24)

The average DoS is connected with η+ by relation9

ν(sm)
ex (E) = 2νRe

η+√
η2+ − 1

. (25)

The 2 × 2 blocks of the cooperon Eq. (16) computed in
Appendix B1 are

Ĉ
(sm)
A = 1/4πν

1 − γ̃q

[(
1

τm

+ χ1γ̃q

2τ ∗

)
τ̂ 0

+
(

1

τ
− γ̃q

2τ ∗

)
τ̂ 3− γ̃q

τ ∗
Reη+

|η2+ − 1| τ̂
1

]
(26)

and

Ĉ
(sm)
B = 1/4πν

1 − τqpγ̃q
(

1
τ

+ χ2

τm

) [( 1

τm

+ χ2γ̃q

2τ ∗

)
τ̂ 0

−
(

1

τ
− γ̃q

2τ ∗

)
τ̂ 3 + i

γ̃q

τ ∗
Imη+

|η2+ − 1| τ̂
2

]
(27)

with

τ−1
qp = 1

τ
+ χ1

τm

, χ1 = |η+|2 + 1

|η2+ − 1| , χ2 = |η+|2 − 1

|η2+ − 1| ,

γ̃q =
〈

1

1 + τ 2
qp(vF q)2

〉
,

1

τ ∗ = τqp

(
1

τ 2
− 1

τ 2
m

)
.

Note that the component Ĉ
(sm)
A still has diffusive divergency

for q → 0, while in Ĉ
(sm)
B it is cut off by magnetic scattering.

Finally, we compute the Hikami-box components

B(sm)
000 = − iπντ 2

qp

2

Ẽ2
+Ẽ−

(√
Ẽ2+ − 	̃2+ + i

τqp

)
[Ẽ2+ − 	̃2+]3/2

√
Ẽ2− − 	̃2−

,

B(sm)
klm = B(sm)

000 ζ k+m
+ ζ l

−, for k,l,m = 0,1

with notations ζ+ = 	̃+/Ẽ+ = 1/η+ and

B(sm)
k33 = − iπντ 2

qp

2

Ẽ+ζ k
+√

Ẽ2+ − 	̃2+
= − iπντ 2

qp

2

η+ζ k
+√

η2+ − 1
,

B(sm)
3k3 = − iπντ 2

qp

2

Ẽ−ζ k
−√

Ẽ2+ − 	̃2+

for k = 0,1.
Taking into account all these modifications, one can

calculate the LDoS correlation function in the presence of
magnetic impurities. Its long-ranged part comes from the
A block only [as it was already mentioned, the divergence
at q → 0 in ĈB is cut off by paramagnetic impurities, see
Eq.(B3)] and the final answer can be represented as

L(sm)
ex (r − r′,E) = (2ντ 2

0

)2 |R|2 C2
n (r − r′), (28)
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where 1/τ0 = 1/τ + 1/τm, Cn(r − r′) is the normal-state cooperon (7) and

R = χ1 + 1

4

1 + τ/τm

1 + χ1τ/τm

{
1 + ϑ2 − 2ϑζ−√

1 − ζ 2−
+ 1 − ϑ2√

1 − ζ 2+
+ 2ζ+

1 − ζ 2+

(
2√

1 − ζ 2−
− Ẽ−

Ẽ+

1√
1 − ζ 2+

)
[(1 + ϑ2)Re[ζ+]

−ϑ(1 + ζ+ζ−)]

}
(29)

with

ϑ = r

√
χ1 − 1

χ1 + 1
,

Ẽ−
Ẽ+

= −E
	

r + η−
−E

	
r + η+

, r = 1 − τ/τm

1 + τ/τm

.

Normalization of the dimensionless function R(E) is se-
lected by the condition R(E) → 1 for E → ∞. This function
together with normalized average DoS is plotted in Fig. 2
for several values of the pair-breaking parameter 1/(τm	).
As one can see, the energy dependence of the correlation
function described by R(E) is quite different from that one

FIG. 2. (Color online) Examples of the energy dependences of
the normalized average DoS ν(sm)

ex (E)/(2ν), Eq. (25), (solid lines),
and function |R(E)|, Eq. (29), (dashed lines), which determines the
long-range LDoS correlations for 1/(τ	) = 5 and different values of
1/(τm	). Dash-dotted lines show for reference the BCS density of
states.

of average density of states. The most dramatic disparity is
observed at small concentration of magnetic impurities, for
1/(τm	) = 0.1. In this case, the function R(E) monotonically
increases with decrease of energy, while ν(E) goes down
and finally vanishes at E ≈ 0.7	. Here, at the edge of local
density of states gap, the function R(E) reaches its maximum.
With increase of magnetic impurities concentration, when
1/(τm	) = 0.5, the function R(E) still passes noticeably
above ν(E), reaches its weakly pronounced maximum and
remains finite when ν(E) turns zero. The behavior of both
functions becomes almost similar only in the gapless state,
when 1/(τm	) = 1. From these plots, we can conclude that,
in contrast to elastic impurities, the ratio L(sm)(E)/[ν(E)]2

increases with decreasing energy, i.e., relative LDoS variations
become stronger at smaller energy. We also found that at the
point where the mean-field average DoS vanishes, the correla-
tion function remains finite. Note again that the vanishing of
the average DoS is not exact result but only a consequence of
the mean-field approximation. In reality, the mean-field gap
point marks the approximate location of transition between
delocalized quasiparticles and the Lifshitz-tail region corre-
sponding to localized quasiparticles.11,12 Calculation of the
LDoS correlation function is beyond the mean-field approach.
As L(E) increases with decreasing the diffusion constant,
the found growth of L(sm)(E) with decreasing energy can
be interpreted as indication of slowing down diffusion when
energy approaches the mobility edge. On the other hand,
our calculation is only applicable to delocalized diffusive
quasiparticles. One can expect that in the tail region, the
LDoS correlation function should decay exponentially at the
localization length. Therefore measurements of the LDoS
correlation function can be used to locate the mobility edge
separating delocalized and localized states.

IV. d-WAVE SUPERCONDUCTORS

Finally, let us consider the inhomogeneous LDoS for su-
perconductors with d-wave symmetry of the order parameter,
which is of special interest because of its relevance to cuprate
high-temperature superconductors. Behavior of LDOS in these
materials was extensively studied by STM.4 Formally, the
long-range LDoS correlation function is still determined by
the general Eq. (19a) but the specifics of nodal gap structure
has to be taken into account.

We consider a two-dimensional d-wave superconductor
with electronic spectrum ε(kx,ky) defined within the square
Brillouin zone |kx |,|ky | < π/a and characterized by the band-
width t =ε(π/a,0) − ε(0,0), where a is the lattice constant.
Figure 3 illustrates the typical Fermi surface of a cuprate
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FIG. 3. (Color online) Schematic Fermi surface for a cuprate
d-wave superconductor. fn and gn represent, respectively, the unity
vectors parallel to the Fermi velocity vf and the “gap velocity” vg at
the nth gap node. The ellipses illustrate the constant-energy surfaces
near the nodes.

superconductor14 that, as usual, is determined by the equation
ε(kx,ky) = μ, where μ is the chemical potential. The order
parameter of the dx2−y2 -wave pairing state is expressed by

	k = 	0[cos(kxa) − cos(kya)].

The gap nodes correspond to the points kn = ± (k0 ± k0)
(n = 1,2,3,4), where k0 is determined by ε(k0,k0) = μ. The
quasiparticle spectrum is given by εk =

√
ξ 2

k + 	2
k with ξk =

ε(kx,ky)−μ and close to the gap nodes it can be linearized as
εk ≈

√
(vf k̃f)2 + (vgk̃g)2, where k̃ is the momentum measured

from the node kn and vg ≈ vf	0/t �vf . The directions of the
Fermi velocity vf and “gap velocity” vg are depicted in Fig. 3.

The weak-localization effects for d-wave superconductors
were considered in Refs. 15 and 16 for arbitrarily strong
impurity scattering. Here, we limit ourselves with the simplest
situation of weak isotropic scattering by non-magnetic elastic
impurities. The one-particle Green’s function has the same
matrix structure as general Eq. (17):

G
R,A
k (E) = [ε̃ ± iγ ] τ0 + 	kτ1 + ξkτ3

[ε̃ ± iγ ]2 − ε2
k

. (30)

Here, ε̃ is the effective energy renormalized by scattering,
γ = γ (ε̃) is the impurity-induced relaxation rate. Both of them
are self-consistently determined by the self-energy part ε̃ ±
iγ (ε̃) = E − �±

0 (ε̃), with

�±
0 (ε̃) = uNn

∫∫
dkx

2π

dky

2π

ε̃ ± iγ (ε̃)

[ε̃ ± iγ (ε̃)]2 − ε2
k

, (31)

Nn being the number of nodes (being four in our case), and
integration is limited by the region near one node. Performing
integration in Eq. (31) with the above quasiparticle spectrum
εk and separating the imaginary part of �±

0 (ε̃), one finds the
transcendental equation for determination of the relaxation

γ Δ γ γ Δ γ

(a) (b)

FIG. 4. (Color online) (a) The energy dependencies of the
parameter ε̃ and the relaxation rate γ . (b) The energy dependence
of the function Fd , which determines the LDoS correlation function
in Eq. (38).

rate γ (ε̃):

ln
	0√

ε̃2 + γ 2
+ ε̃

γ
arctan

ε̃

γ
= 2πvfvg

uNn

. (32)

At zero energy, it reproduces the known result:18–20

γ (0) = γ0 = 	0 exp

(
−2πvfvg

uNn

)
,

while at large energies,

γ (ε̃ � γ0) ≈ π

2

ε̃

ln(ε̃/γ0) + 1
.

The real part of �+
0 determines the value of ε̃:

ε̃ − uNn

2πvfvg

(
ε̃ ln

	0√
γ 2 + ε̃2

− γ arctan
ε̃

γ

)
= E. (33)

For small E, ε̃ = ln(	0/γ0)E. When the energy is large (E �
γ0),

ε̃ ≈ E
ln (	0/γ0)

ln (ε̃/γ0)
.

As follows from the structure of Eqs. (32) and (33), the
energy dependencies of ε̃ and γ have scaling form, ε̃ =
γ0Gε[ln(	0/γ0)E/γ0], γ = γ0Gγ [ln(	0/γ0)E/γ0]. These de-
pendencies are presented in Fig. 4(a).

The LDoS in superconducting state is determined by the
integral of the imaginary part of the Green’s function (30) that
gives17

N (d)
ex (E) = Nn

2π2vfvg

(
γ ln

	2
0

ε̃2 + γ 2
+ 2ε̃ arctan

ε̃

γ

)
. (34)

The structure of cooperon for d-wave superconductors has
been investigated in Ref. 15 and 16. It was demonstrated
that only diagonal components of the cooperon C

(sd)
kk in the

Pauli-matrix expansion, Eq. (15b), are singular and these
singular components are connected by relation C

(sd)
00 = C

(sd)
11 =

−C
(sd)
22 = C

(sd)
33 . Therefore the matrix structure of d-wave

cooperon is different from structure of the s-wave cooperon,
Eq. (20). Derivation of the singular cooperon Cd(q) ≡ C

(sd)
00 (q)

for arbitrary energy is presented in Appendix D1 and result can
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be presented as

Cd(q) = γ 2

πN
(d)
ex Dq2

, (35)

where parameters γ , N (d)
ex , and the diffusion coefficient D are

energy dependent with

D (E) = 〈v2〉
2γ

1 + ε̃
γ

arctan ε̃
γ

ln 	0√
ε̃2+γ 2

+ ε̃
γ

arctan ε̃
γ

. (36)

Note that our result for Cd(q) is smaller by factor four
than the result of Refs. 15 and 16. The origin of this
discrepancy is discussed in Appendix D1. For more transparent
representation of the energy dependence in Eq. (35), we note
a useful relation:

N (d)
ex (E)D(E) = N (d)

ex (0)D(0)[1 + (ε̃/γ ) arctan(ε̃/γ )].

Calculation of the Hikami boxes B(d)
inj defined by Eq. (19c)

with Green’s functions (30) (see Appendix D2), results in

B(d)
000 = Nn

vfvg
(ε̃ + iγ )2 (ε̃ − iγ ) J (0),

B(d)
101 = B(d)

303 = Nn

vfvg
(ε̃ − iγ ) J (2),

B(d)
330 = B(d)

033 = B(d)
011 = B(d)

110 = Nn

vfvg
(ε̃ + iγ ) J (2),

where

J (0) = − i

16π (ε̃ + iγ )2 ε̃γ

[
1 + (ε̃ + iγ )2

ε̃γ
arctan

ε̃

γ

]
,

J (2) = − i

32πε̃γ

[
1 + (ε̃ − iγ )2

ε̃γ
arctan

ε̃

γ

]
.

Further summation of these, nonzero, components of B(d)
inj in

Eq. (19b) with corresponding traces of five Pauli-matrices
products as the coefficients allows to present the tensor Ukm in
the diagonal form U

(d)
km = Ukδkm with

U0;2 = B(d)
000 + 2B(d)

101 ± 4B(d)
011,

U1;3 = B(d)
000 + 2B(d)

101.

In result, the LDoS correlation function Eq. (19a) for the d-
wave case takes the form

L(d)
ex (r−r′,E) = 8

π2

[∣∣B(d)
000+2B(d)

101

∣∣2+8|B(d)
011|2

]
C2

d (r−r′)

= [N2
nγ (ε̃)]2

8π4v2
f v

2
gγ

4
0

Fd

[
ε̃

γ (ε̃)

]
C2

d (r−r′,E = 0),

(37)

with γ (ε̃) and ε̃(E) have to be determined from Eqs. (32)
and (33),

Fd(x) = 1 + 1/x2

(1 + x arctan x)2

[
3

2

(
1 + x2 − 1

x
arctan x

)2

+ 2 arctan2 x
] =

{
2 for x = 0
3/2 for x � 1 ,

and the zero-energy cooperon in real space is given by

Cd(r,E = 0) = 4π

Nn

vfvgγ
2
0

〈v2〉 ln
lφ

r
.

Using this result, we can rewrite LDoS correlation function in
a more transparent form:

L(d)
ex (r−r′,E) = [N (d)

ex (E)
]2

Fd

(
ε̃

γ

)
u2

32π2〈v2〉2
ln2 lφ

|r − r′| .
(38)

We can see that, in contrast to s-wave superconductors
with potential impurities, the energy dependence of the
correlation function is not determined by the average den-
sity of states. Additional dependence characterized by the
function Fd[ ˜ε(E)/γ (E)] appears. Both the ratio ε̃/γ and
function Fd have universal dependencies on the scaled energy
(E/γ0) ln(	0/γ0). The energy dependence of Fd is plotted in
Fig. 4(b). We observe the same tendency as for an s-wave
superconductor with magnetic impurities: the relative LDoS
variations become stronger at smaller energies.

V. DISCUSSION

It is known that observable quantities of disordered metallic
systems exhibit large mesoscopic fluctuations.3 The large-
scale correlations of the LDoS demonstrates long tails extend-
ing up to r ∼ lφ .23 As we have seen above, due to diffusive
propagation of quasiparticles, such property of the LDoS
correlation function remains valid also in superconductive
state. This correlation function for all cases depends on
scatterers potential V in the same way: L ∼ V 4 and its
spatial dependence is determined only by the dimensionality of
superconductor. Our analysis demonstrates, however, that the
energy dependence of the large-scale LDoS correlations carries
valuable information about the order parameter symmetry and
character of scattering in various superconductive systems.
Indeed, as we have seen above, while the spatial depen-
dence of L(r−r′,E) is the same for all types of considered
superconducting systems and is determined by the square
of normal-metal cooperon, the energy dependence of the
magnitude of such correlator can serve as the fingerprint of
superconductor intrinsic properties. In the reference case of
s-wave superconductor with elastic impurities, such energy
dependence is just given by the square of the BCS quasiparticle
density of states. More complex symmetry of the order
parameter manifests itself in significant changes of the energy
dependence of LDoS correlation function. Investigated above
the case of d-wave pairing [see Fig. 4(b)], demonstrated
that the corresponding LDoS correlation function, normalized
on the appropriate square of the LDoS, already depends on
the quasiparticle energy, although this dependence is rather
smooth.

To illustrate the role of pair-breaking scattering, we ana-
lyzed the case of s-wave superconductor containing magnetic
impurities. It is worth to discuss our results in light of
the extended AG theory in Ref. 11, which investigated the
low-energy behavior of the average DoS in the framework of
the nonlinear sigma model. The authors of Ref. 11 demonstrate
that AG results, establishing the formation of the hard gap
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in the local density of states, correspond to the saddle-point
solution of the proposed effective action. Their nonperturbative
extension beyond the mean-field approximation results in
appearance of subgap exponential tails in the density of states,
what should lead also to appearance of nonzero moments of
this physical value for energies below the AG gap. Plausibly,
our perturbative calculus of the second moment of local
densities of states L(sm)(r − r′,E) (see Fig. 2) indicates the
same phenomenon. Our analysis allows for a straightforward
generalization to other similar situations, such as interband
scattering in multiband superconductors with different signs
of order parameter in different bands (s± state), a widely
discussed model for iron pnictides and selenides.

Modern STM technique, in principle, allows to probe the
long-range correlations studied theoretically in this article.
The challenge is to perform scan over large areas with sizes
exceeding mean-free path. Another interesting opportunity
provided by STM measurements of the LDoS correlation
function is to extract and study the temperature-depending
phase-breaking length lφ(T ) of quasiparticle excitations in
superconductors of different nature. As far as we know, such
a problem was never considered neither theoretically nor
experimentally.
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APPENDIX A: s-WAVE SUPERCONDUCTOR
WITH ELASTIC IMPURITIES

1. Calculation of s-wave cooperon

In this appendix, we consider the cooperon structure for
a s-wave superconductor with weak potential scattering. The
superconducting cooperon has four Nambu indices and obeys
the equation graphically represented Fig. 5,

C
αα1
ββ1

= u
αα1
ββ1

+ u
αγ

βν �γγ1
νν1

C
γ1α1
ν1β1

, (A1)

�γγ1
νν1

=
∫

dDp
(2π )D

ĜA
γγ1

(p)ĜR
νν1

(p − q),

where we again assume summation with respect to repeated
Nambu indices. Here, the superconducting Green’s functions
ĜR,A averaged over impurities are given by Eq. (17). For Born

= +
q/2-p

q/2+p

q/2-p1

q/2+p1

q/2-p’

q/2+p’

FIG. 5. Graphic presentation of Eq. (A1) for the superconducting
cooperon.

potential impurities, the matrix impurity line is given by

u
αα1
ββ1

= uτ̂ 3
αα1

τ̂ 3
ββ1

,

with u = niV
2 = 1/(2πντ ).

To proceed, we represent the matrix impurity line as

u
αα1
ββ1

=
3∑

i,j=0

uij τ̂
i
αβ τ̂

j

β1α1
(A2)

with uij = u

2
E

(33)
ji ,

where, following Refs. 21 and 22, we introduced notation for
the trace of four Pauli matrices:

E
(ij )
lm ≡ 1

2 Tr(τ̂ i τ̂ l τ̂ j τ̂ m).

We will need only the following components of E
(ij )
ml that have

a simple block structure:21,22

Ê(00) =
[

τ̂ 0 0
0 τ̂ 0

]
, Ê(11) =

[
τ̂ 0 0
0 −τ̂ 0

]
, Ê(33) =

[
τ̂ 3 0
0 −τ̂ 3

]
,

Ê(01) =
[

τ̂ 1 0
0 τ̂ 2

]
, Ê(10) =

[
τ̂ 1 0
0 −τ̂ 2

]
.

Since E
(33)
ij is diagonal, we have uij = u

2 αiδij with α0 = α3 =
−α1 = −α2 = 1.

We use a similar decomposition for the polarization
operator,

�γγ1
νν1

(q,E) = ν

3∑
l,m=0

Slmτ̂ l
γ ν τ̂

m
γ1ν1

(A3a)

with

Slm = 1

2ν
Tr

[∫
dDp

(2π )D
ĜA

p τ̂lĜ
R
p−qτ̂m

]
= E

(ij )
lm Pij (A3b)

and

Pij (q) =
〈∫

dξpG
A
i,pG

R
j,p−q

〉
F

, (A3c)

where 〈. . .〉F means averaging over the Fermi surface. Nonzero
components of Pij are only for subscripts (i,j ) = (0,0), (1,1),
(0,1), (1,0), (3,3), and they can be straightforwardly calculated
as

P00 = πτγq
E2

E2 − 	2
, P11 = πτγq

	2

E2 − 	2
,

P01 = P10 = πτγq
E	

E2 − 	2
, P33 = πτγq,

with

γq ≡
〈

1

1 + τ 2 (vF q)2

〉
≈ 1 − τ 2〈(vF q)2〉. (A4)

Due to the block structure of the corresponding components
of E

(ij )
lm , the 4 × 4 matrix Ŝ is composed of two independent

2 × 2 submatrices, [0,1] and [2,3] blocks,

Ŝ =
[

ŜA 0

0 ŜB

]
. (A5)
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These blocks can be explicitly found:

ŜA = τ̂ 0 (P00 + P11) + τ̂ 3P33 + 2τ̂ 1P01,

ŜB = τ̂ 0 (P00 − P11) − τ̂ 3P33.

Note that, due to the relation P00 − P11 = P33, the component
S22 vanishes.

Equation for the Pauli-matrix components of the cooperon
C

(s)
ij = 1

4 τ̂ i
βαC

αα1
ββ1

τ̂
j

β1α1
now takes the form

C
(s)
ij = u

2
αiδij + 1

2πτ
αiSilC

(s)
lj .

The matrix Ĉ(s) has the same block form as Ŝ meaning that this
4 × 4 system splits into two independent 2 × 2 subsystems,
which allows us to obtain analytical results:

C
(s)
A = u

2
(1 − γq)−1

×
{(

1 − γq

2

)
τ̂3 + γq

2

E2 + 	2

E2 − 	2
τ̂0 − γq

E	

E2 − 	2
τ̂1

}
,

(A6)

C
(s)
B = u

2

{−1 0

0 (1 − γq)−1

}
. (A7)

We can see that C
(s)
33 (q) equals half of the normal-state

cooperon,

C
(s)
33 (q) = 1

2
Cn(q) = 1

4πντ

D

l2q2
. (A8)

The singular part of C
(s)
A for q → 0 is

C
(s)
A = u/2

τ 2〈(vF q)2〉
{

1

2
τ̂3 + 1

2

E2 + 	2

E2 − 	2
τ̂0 − E	

E2 − 	2
τ̂1

}
= u/2

τ 2〈(vF q)2〉

{
E2

E2−	2 − E	
E2−	2

− E	
E2−	2

	2

E2−	2

}
. (A9)

This allows us to present the cooperon components in the
following form:

C
(s)
ij = C

(s)
00 (−	/E)i+j (i,j = 0,1) ,

with

C
(s)
00 = E2

E2 − 	2
C

(s)
33 .

Note that in the normal-state limit, 	 → 0, only the compo-
nents C

(s)
00 and C

(s)
33 remain singular.

2. Calculation of s-wave Hikami boxes

Here, we present details of calculations of Hikami boxes
B(s)

inj defined by Eq. (19c). In k space, B(s)
inj are given by the

integrals

B(s)
inj =

∫
dDk

(2π )D
gA

i (εk)gR
n (εk)gA

j (εk) (A10)

= ν

∫
dξgA

i (ξ )gR
n (ξ )gA

j (ξ ),

where g
R,A
i are defined in Eq. (15a).

For example, the component B(s)
000 is given by the integral

B(s)
000 = ν

∫
dξ

(αA)2αRE3

[(αA)2(E2−	2)−ξ 2]2[(αR)2(E2−	2)−ξ 2]
.

Performing integration and substituting αR,A, see Eq. (17), we
obtain

B(s)
000 = − iπντ 2

2

E3(
√

E2 − 	2 + 3i/2τ )

(E2 − 	2)3/2(
√

E2 − 	2 + i/2τ )
.

As g
R,A
1 = (	/E)gR,A

0 , the components B(s)
imj for i,m,j = 0,1

are connected with the B000 by the simple relation

B(s)
imj = B(s)

000(	/E)i+j+m.

Two remaining nonzero components, B(s)
033 and B(s)

303, are given
by

(
B(s)

033

B(s)
303

)
= −ν

(
αA

αR

)
E

∫
dξ

ξ 2[
ξ 2 − (√E2 − 	2 + i

2τ

)2]2[
ξ 2 − (√E2 − 	2 − i

2τ

)2] ,

and evaluation of the integral gives

B(s)
033 = − iπνEτ 2

2
√

E2 − 	2
,

B(s)
303 = αR

αA
B(s)

033 = − iπνEτ 2

2
√

E2 − 	2

√
E2 − 	2 − i

2τ√
E2 − 	2 + i

2τ

.

APPENDIX B: s-WAVE SUPERCONDUCTOR
WITH MAGNETIC IMPURITIES

1. Calculation of cooperon

In this appendix, we present computation details of the
cooperon for s-wave superconductor with Ising magnetic

impurities polarized along z axis. The equation for the
cooperon graphically presented in Fig. 5 is again given by
Eq. (A1) but the impurity line here is now composed by
potential and magnetic contributions:

u
αα1
ββ1

= uτ̂ 3
αα1

τ̂ 3
β1β

+ umδαα1δββ1

with um = 1/(2πντm). In order to obtain the explicit expres-
sion for the cooperon, we follow the same route as in the case
of potential impurities. We again present the impurity line in
the form (A2), where the 4 × 4 matrix uij is now given by

uij = ui

2
δij , ui = uE

(33)
ii + um.

Using this presentation and formulas for the polarization
function [see Eqs. (A3a) and (A3b)], one can write the equation
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for the cooperon:

C
(sm)
ij = ui

2
δij + νuiSilC

(sm)
lj . (B1)

To evaluate the matrix Sil , we again have to compute the
integrals Pij defined by Eq. (A3c) but accounting for scattering
from magnetic impurities. For nonzero components, we obtain

P00 = πτqpγ̃q
|η+|2

|η2+ − 1| , P11 = πτqpγ̃q
1

|η2+ − 1| ,

P01 = πτqpγ̃q
η+

|η2+ − 1| , P33 ≈ πτqpγ̃q,

where η+ is introduced by Eq. (24) and γ̃q can be ob-
tained from γq defined in Eq. (A4) by the replacement of
τ with the energy-dependent quasiparticle relaxation time
τqp = 1/(2Im

√
Ẽ2

+ − 	2
+). The useful expression for the latter

parameter is derived in Appendix B3:

1/τqp = 1

τ
+ χ1

τm

with χ1 = |η+|2 + 1

|η2+ − 1| .

Equation (B1) for the cooperon again splits into two
independent 2 × 2 blocks:

Ĉ
(sm)
A = 1

2 ûA + 2νûAŜAĈ
(sm)
A ,

Ĉ
(sm)
B = 1

2 ûB + 2νûBŜBĈ
(sm)
B ,

where the blocks of the matrices û and Ŝ can be evaluated
as ûA = (u/2) τ̂ 3 + (um/2) τ̂ 0, ûB = − (u/2) τ̂ 3 + (um/2) τ̂ 0,
and

ŜA = τ̂ 0 (P00 + P11) + τ̂ 3P33 + 2τ̂ 1ReP01,

ŜB = τ̂ 0 (P00 − P11) − τ̂ 3P33 + 2iτ̂ 2ImP01.

Deriving relation

νûAŜA = τqpγ̃q

[
τ̂ 0

(
1

2τ
+ χ1

2τm

)
+τ̂ 3

(
χ1

2τ
+ 1

2τm

)
+
(

i

τ
τ̂ 2 + 1

τm

τ̂ 1

)
Reη+∣∣η2+ − 1

∣∣
]
,

we can formally present Ĉ
(sm)
A as

Ĉ
(sm)
A =

{
τ̂0

[
1−τqpγ̃q

(
1

2τ
+ χ1

2τm

)]
−τ̂3τqpγ̃q

[
χ1

2τ
+ 1

2τm

]
− τqpγ̃q

Reη+
|η2+ − 1|

[
i

τ
τ̂ 2 + 1

τm

τ̂ 1

]}−1 1

2
(uτ̂ 3 + umτ̂ 0).

After some algebra, this expression can be transformed to a
much simpler form:

Ĉ
(sm)
A = 1/4πν

1 − γ̃q

{[
1

τm

+ τqpγ̃qχ1

2

(
1

τ 2
− 1

τ 2
m

)]
τ̂ 0

+
[

1

τ
− τqpγ̃q

2

(
1

τ 2
− 1

τ 2
m

)]
τ̂ 3

− τqpγ̃q
Reη+

|η2+ − 1|
(

1

τ 2
− 1

τ 2
m

)
τ̂ 1

}
. (B2)

Similarly, in order to compute the block Ĉ
(sm)
B , we derive

relation

2νûBŜB = τqpγ̃q

[(
1

2τ
+ χ2

2τm

)
τ̂ 0 −

(
χ2

2τ
+ 1

2τm

)
τ̂ 3

−
(

1

τ
τ̂ 1 − 1

τm

iτ̂ 2

)
Imη+∣∣η2+ − 1

∣∣
]

with χ2 = (|η+|2 − 1)/|η2
+ − 1|. This allows us to present a

solution for Ĉ
(sm)
B in the form

Ĉ
(sm)
B =

{[
1 − τqpγ̃q

(
1

2τ
+ χ2

2τm

)]
τ̂ 0 + τqpγ̃q

[(
χ2

2τ

+ 1

2τm

)
τ̂ 3 +

(
1

τ
τ̂ 1 − i

τm

τ̂ 2

)
Imη+

|η2+ − 1|
]}−1

× 1

2
(−uτ̂ 3 + umτ̂ 0).

After straightforward algebra, one can reduce it to

Ĉ
(sm)
B = 1/4πν

1−τqpγ̃q (1/τ +χ2/τm)

{
τ̂ 0

[
1

τm

+ χ2τqpγ̃q

2

×
(

1

τ 2
− 1

τ 2
m

)]
−τ̂ 3

[
1

τ
− τqpγ̃q

2

(
1

τ 2
− 1

τ 2
m

)]
+ iτqpγ̃qτ̂

2

(
1

τ 2
− 1

τ 2
m

)
Imη+

|η2+−1|
}

. (B3)

2. Calculation of Hikami boxes

Let us calculate Hikami boxes (A10) in the case of
s-wave superconductor with magnetic impurities, i.e., using
the matrix Green’s function (22). For the component B

(sm)
000 ,

one finds

B
(sm)
000 = −ν

∫
dξ

Ẽ2
+Ẽ−[

ξ 2 − (Re
√

Ẽ2+ − 	̃2+ + i
2τqp

)2]2[
ξ 2 − (Re

√
Ẽ2+ − 	̃2+ − i

2τqp

)2] = − νẼ2
+Ẽ−

[Re
√

Ẽ2+ − 	̃2+]5
I (0)

with

I (μ) (κ) =
∫ ∞

−∞

xμdx

[x2 − (1 + iκ)2]2[x2 − (1 − iκ)2]
,

κ = 1

2τqpRe
√

Ẽ2+ − 	̃2+
.

This integral can be easily evaluated for relevant values of μ:

I (μ) = iπ

8κ2(1 + iκ)

{
(1+3iκ)

(1+iκ)(1+κ2) , for μ = 0

1, for μ = 2
.
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Finally,

B
(sm)
000 = − iπντ 2

qp

2

η2
+η−

(√
η2+ − 1 + i

τqp	̃+

)
(η2+ − 1)3/2

√
η2− − 1

.

For the convenient representation of the remaining
components Bimj , we introduce notation ζ+ = 	̃+/Ẽ+ =

1/η+. When the subscripts are set to k,l,m = 0,1,
one finds

B
(sm)
kml = − iπντ 2

qp

2

Ẽ2
+Ẽ−

(√
Ẽ2+ − 	̃2+ + i

τqp

)
(Ẽ2+ − 	̃2+)3/2

√
Ẽ2− − 	̃2−

ζ k+l
+ ζm

− .

Other nonzero components are

(
B

(sm
033

B
(sm)
303

)
= −ν

∫
dξ

Ẽ±ξ 2[
ξ 2 − (Re

√
Ẽ2+ − 	̃2+ + i

2τqp

)2]2[
ξ 2 − (Re

√
E2 − 	2 − i

2τqp

)2]
= − νẼ±

(Re
√

Ẽ2+ − 	̃2+)3
I (2) = − iπντ 2

qp

2

Ẽ±√
Ẽ2+ − 	̃2+

and

B
(sm)
i33 = ζ i

+B
(sm)
033 , B

(sm)
3i3 = ζ i

−B
(sm)
303 for i = 0,1.

3. Quasiparticle relaxation time τqp

The quasiparticle relaxation time 1/τqp(E) =
2Im

√
Ẽ2

+ − 	̃2
+ determines the value of diffusion constant

of quasiparticles in presence of magnetic impurities. In this
section, we derive a useful formula for this parameter. From
the definition of 	̃+, Eq. (23b), one obtains the relation

1/τqp(E) = 2Im[	̃R

√
η2+ − 1]

= 2	Im
√

η2+ − 1 + 1

τ
− 1

τm

. (B4)

Presenting the parameter η+ as the sum of its real and
imaginary parts, η+ = ηr + iηi , we find Eq. (24) from the
following relation for the imaginary part:

ηi = 1

τm	
Re

η+√
η2+ − 1

= 1

τm	

ηrRe[
√

η2+ − 1] + ηiIm[
√

η2+ − 1]

|η2+ − 1| .

Using this result, the factor Im
√

η2+ − 1 in the right-hand side
of Eq. (B4) can be transformed as

Im
√

η2+−1 = ηrηi

Re
√

η2+−1
= 1

τm	

η2
r + (Im[

√
η2+−1])2

|η2+−1|

= 1

2τm	

(
1 + |η+|2 + 1

|η2+ − 1|
)

.

Substituting this result into Eq. (B4), we finally obtain the
presentation

1/τqp(E) = 1

τ
+ 1

τm

|η+|2 + 1

|η2+ − 1| , (B5)

which was used in Appendix B1.

APPENDIX C: TRACE OF FIVE PAULI MATRICES

First of all, let us symmetrize trace (19b) with respect to
two indices:

1
2 Tr(τ̂ i τ̂ k τ̂ nτ̂mτ̂ j ) = 1

4 Tr[(τ̂ j τ̂ i + τ̂ i τ̂ j )τ̂ k τ̂ nτ̂m].

Let us recall that

τ̂ i τ̂ k = δi0τ̂
k + δk0τ̂

i − δi0δk0τ̂
0

+ (1 − δi0) (1 − δk0)

[
δikτ̂

0 + i

3∑
s=1

εiks τ̂
s

]
,

τ̂ i τ̂ j +τ̂ j τ̂ i = 2δij τ̂
0 + 2δi0(τ̂ j − δj0τ̂

0) + 2δj0(τ̂ i − δi0τ̂
0)

and write down the trace of three Pauli matrices:

1
2 Tr[τ̂ k τ̂ nτ̂m] = δm0δkn + δk0δmn + δn0δmk

− 2δm0δk0δn0 + iε0knm

(εiks and ε0knm here are 3D and 4D Levi-Civita symbols).
A further step is the calculation of the trace of four Pauli

matrices:

1

2
Tr[(τ̂ j − δj0τ̂

0)τ̂ k τ̂ nτ̂m]

= 1

2
Tr

[
(δjk − δj0δk0)τ̂ nτ̂m + δk0(τ̂ j − δj0τ̂

0)τ̂ nτ̂m

+ i

3∑
s=0

ε0jks τ̂
s τ̂ nτ̂m

]
= (1 − δj0)[δjkδnm + δjmδkn − δjn(δkm − 2δk0δm0)

+ iε0jnmδk0 + iε0jknδm0 + iε0jkmδn0].

We used the relation

(τ̂ j − δj0τ̂
0)τ̂ n

= (δjn − δj0δn0)τ̂ 0 + δn0(τ̂ j − δj0τ̂
0) + i

3∑
s=0

ε0jns τ̂
s
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and the expression for product of Levi-Civita symbols

3∑
s=0

ε0jksε0snm = (1 − δj0)(1 − δk0)(δjnδkm − δjmδkn).

Finally, one finds the required symmetrized trace of five Pauli
matrices:

1
4 Tr[τ̂ i τ̂ k τ̂ nτ̂mτ̂ j + τ̂ j τ̂ k τ̂ nτ̂mτ̂ i]

= δij (δm0δkn + δk0δmn + δn0δmk − 2δm0δk0δn0 + iε0knm)

+ δi0(1 − δj0)[δjkδnm + δjmδkn − δjn(δkm − 2δk0δm0)

+ iε0jnmδk0 + iε0jknδm0 + iε0jkmδn0

+ δj0(1 − δi0)δikδnm + δimδkn − δin(δkm − 2δk0δm0)

+ iε0inmδk0 + iε0iknδm0 + iε0ikmδn0] .

APPENDIX D: d-WAVE SUPERCONDUCTORS

1. Calculation of d-wave cooperon

The cooperon corresponding to propagation of quasiparti-
cles for superconductors with d-wave symmetry of the order
parameters can be found from the same Eq. (A1) as it was
done above. We again employ its expansion in terms of Pauli
matrices [see Eq. (15b)]. The analogous expansion �

γγ1
νν1 =

�mnτ
m
νν1

τn
γ γ1

we apply also to the polarization function, the
only nonzero components of which are �00, �11, and �33.

According to Refs. 15 and 16, only the diagonal com-
ponents of such cooperon are singular. Keeping only these
components, we find that they obey a relatively simple linear
system of equations:

(1 − u�33)C(sd)
00 − u�00C

(sd)
33 + u�11C

(sd)
22 = 0, (D1a)

(1 − u�33)C(sd)
33 − u�00C

(sd)
00 − u�11C

(sd)
11 = u, (D1b)

(1 − u�33)C(sd)
11 + u�00C

(sd)
22 − u�11C

(sd)
33 = 0, (D1c)

(1 − u�33)C(sd)
22 + u�00C

(sd)
11 + u�11C

(sd)
00 = 0. (D1d)

In accordance with Refs. 15 and 16, the ansatz

C
(sd)
00 = C

(sd)
11 = −C

(sd)
22 = C

(sd)
33 ≡ Cd (D2)

reduces the right-hand side of all four equations to (1 −
u�ii)Cd. As we will see below, u�ii(q,�) → 1 for q,� → 0
meaning that the relations (D2) correspond to the singular
eigenvector. Taking the linear combination of equations
(D1a) + (D1b) + (D1c)-(D1d), we obtain

(1 − u�ii)
(
C

(sd)
00 + C

(sd)
33 + C

(sd)
11 − C

(sd)
22

) = u,

which gives

Cd(q) = (u/4)/ [1 − u�ii(q,0)] . (D3)

We noticed, however, that this result is four times smaller than
the one reported in Refs. 15 and 16. A detailed presentation
of derivation given in Ref. 16 allows us to trace the origin
of this discrepancy. The authors of Ref. 16 obtained their
expression for Cd by substitution of the relations (D2) between
the singular parts of C

(sd)
ii into Eq. (D1b), which led to Cd =

u/ [1 − u�ii(q,0)]. This step, however, is problematic since
side by side with the singular parts, C

(sd)
ii also contain regular

contributions: C
(sd)
ii = αiC

(sd)
d + ci , with α2 = −1; αi = 1 for

i �= 2 and ci are constants. Substituting such presentation into
Eq. (D1b), we immediately see that the constants ci contribute
to the nominator of Cd. As follows from the result (D3), this
contribution amounts to its four times reduction.

Let us pass to evaluation of the trace of the polarization
function:

�ii(q,�) =
∫

d2p
(2π )2

ε̃2 + (γ − i�̃/2)2 + ε q
2 −pε q

2 +p[
(ε̃ + �̃/2 + iγ )2 − ε2

q
2 −p

][
(ε̃ − �̃/2 − iγ )2 − ε2

q
2 +p

] (D4)

with �̃ = dε̃/dE �. Note that the vanishing of 1 − u�ii(q,�)
for q,� → 0 leading to diffusive behavior follows from
general identity

u�ii(0,0) = −�+
0 − �−

0

2iγ
= 1, (D5)

which can be derived from the above definition of �ii(q,�).
The next step is to perform the expansion of the polarization

operator over q up to quadratic term:

u�ii(q,0) − 1 = −〈v2〉
4γ 2

1 + ε̃
γ

arctan ε̃
γ

ln 	0√
ε̃2+γ 2

+ ε̃
γ

arctan ε̃
γ

q2 (D6)

with 〈v2〉 ≡ (v2
f + v2

g)/2. For the trace of the polarization
operator at finite frequency and q = 0, �ii(0,�), we derive

the following relation:

u�ii(0,�) = −�+
0

(
E + �

2

)− �−
0

(
E − �

2

)
�̃ + 2iγ

.

As Re�±
0 = E − ε̃, the difference �+

0 (E + �
2 ) − �−

0 (E − �
2 )

can be represented as

�+
0

(
E + �

2

)
− �−

0

(
E − �

2

)
≈ �

(
1− dε̃

dE

)
− 2iγ

= � − �̃ − 2iγ,

leading to a very simple result for small �:

�ii(0,�) ≈ 1 + i�/2γ.

Collecting terms, we obtain

u�ii(q,�) = 1 + 1
2γ

(i� − Dq2) (D7)
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with energy-dependent diffusion coefficient

D(E) = 〈v2〉
2γ

1 + ε̃
γ

arctan ε̃
γ

ln 	0√
ε̃2+γ 2

+ ε̃
γ

arctan ε̃
γ

. (D8)

Its value for zero energy was first obtained in Refs. 15 and 16.
Substituting Eq. (D7) into Eq. (D3) and using relation γ =
(π/2)uNex,d valid for all energies, we obtain the presentation
of the cooperon in Eq. (35) of the main text.

2. Calculation of d-wave Hikami boxes

In this appendix, we calculate the Hikami boxes for a
two-dimensional superconductor with d-wave symmetry of
the order parameter:

B(d)
imj =

∫
dR1

∫
dR2G

R
i (R1)GA

m(R1 + R2)GR
j (R2)

=
∫

d2k
(2π )2

GR
i (k)GA

m(k)GR
j (k).

The Green’s function for d-wave superconductor is determined
by Eq. (30), which we rewrite in the form

G
R,A
k (ε) = g

R,A
i τ̂ i

[ε̃ ± iγ ]2 − ε2
k

with ⎛⎜⎜⎜⎝
g

R,A
0

g
R,A
1

g
R,A
2

g
R,A
3

⎞⎟⎟⎟⎠ =

⎛⎜⎝ ε̃ ± iγ

	k = vgky

0
ξk = vfkx

⎞⎟⎠ .

Hence the block B(d)
imj can be rewritten as

B(d)
imj

= Nn

vfvg

∫∫
d	k

2π

dξk

2π

gR
i (	k,ξk) gA

m(	k,ξk) gR
j (	k,ξk)[

α2−(	2
k + ξ 2

k

)]2[
(α∗)2−(	2

k + ξ 2
k

)]
with α = ε̃ + iγ . The only nonzero components are
B(d)

000,B
(d)
011,B

(d)
101,B

(d)
110,B

(d)
033,B

(d)
303,B

(d)
330 and to get the explicit

expressions for them one has to carry out the integrals:

J (μ) =
∫∫

d	k

2π

dξk

2π

ξ
μ

k[
α2−(	2

k+ ξ 2
k

)]2 [
(α∗)2−(	2

k+ ξ 2
k

)]
with μ = 0,2. Then the blocks Bimj are expressed as

B(d)
000 = Nn

α2α∗

vfvg
J (0),

B(d)
101 = B(d)

303 = Nn

α∗

vfvg
J (2),

B(d)
330 = B(d)

033 = B(d)
011 = B(d)

110 = Nn

α

vfvg
J (2).

The integrals J (μ) can be computed explicitly as

J (0) = − i

16π (ε̃ + iγ )2 ε̃γ

[
1 + (ε̃ + iγ )2

ε̃γ
arctan

ε̃

γ

]
and

J (2) = − i

32πε̃γ

[
1+ (ε̃ − iγ )2

ε̃γ
arctan

ε̃

γ

]
= −[J (0)]∗

[ε̃ − iγ ]2

2
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