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1 1. INTRODUCTION

Layered superconductors are materials made from
a stack of alternating thin superconducting layers sep�
arated by nonsuperconducting regions. The supercon�
ducting layers are essentially two�dimensional (2D) as
long as they are so thin that there is no variation in
fields, or in the superconducting order parameter,
across each layer. Such structures frequently occur
naturally in anisotropic crystals. A layered supercon�
ductor can carry supercurrents along the layers, as well
as between the layers. This is due to the Josephson tun�
neling of Cooper pairs [1] across the insulating regions
that separate neighboring superconducting layers, i.e.,
each pair of neighboring layers forms one Josephson
junction. In general, the z�axis (Josephson) supercur�
rents are weaker than the supercurrents along the lay�
ers. A mere “layeredness” of atomic structure, how�
ever, does not automatically make a material a layered
superconductor. When the interlayer electrical cou�
pling is sufficiently strong, this discrete system of lay�
ers approximates to a continuous superconductor with
uniaxial anisotropy. Hence, we are interested in the
case where the approximation to a uniaxial continuous
superconductor breaks down, which happens when
the layer separation d is greater than the z�axis super�
conducting coherence length, d � ξc.

1  The article is published in the original.

The most prominent example is the high�Tc
cuprate superconductors, discovered in 1986 [2–5],
which led to a huge interest in physics of layered super�
conductors. The two most studied cuprate com�
pounds, YBa2Cu3O7 (YBCO) and Bi2Sr2CaCu2Ox
(BSCCO), have similar transition temperatures Tc ≈
90 K and represent two important particular cases.
YBCO is moderately anisotropic, with the anisotropy
factor γ ≈ 5–7, and its “layeredness” becomes essential
at low temperatures when the c�axis coherence length
ξc drops below the layer spacing d. On the other hand,
BSCCO has a huge anisotropy factor, γ ≈ 400–1000,
and behaves as a layered superconductor practically in
the whole temperature range below Tc. Other naturally
layered superconductors include the transition metal
dichalcogenides [6, 7] and organic charge�transfer
salts formed with the molecule BEDT–TTF [8, 9]. An
important new family of atomically layered supercon�
ducting materials, iron pnictides and chalcogenides,
was discovered in 2008 [10] and is being extensively
explored since then (see, e.g., reviews [11–13]). Anisot�
ropy of most compounds is actually not very high and
they typically behave as anisotropic three�dimensional
materials. There are important exceptions, however.
The most studied compound in which the layered struc�
ture is clearly essential is SmFeAsO1 – xFx [14] with Tc
up to 55 K. For example, the Josephson nature of the
in�plane vortices at low temperatures has been
recently demonstrated in this compound [15]. Also,
several iron pnictide compounds with extremely high
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anisotropy have been discovered [16–18]. Properties
of these compounds remain mostly unexplored due to
their rather complicated composition.

All layered superconductors share a very similar
general behavior of the vortex matter generated by an
external magnetic field, which is insensitive to the
microscopic nature of superconductivity inside the
layers. Several excellent review articles have been pub�
lished in the past covering different aspects of the vor�
tex matter in type�II superconductors [19–23]. Nev�
ertheless, we feel that further progress in the under�
standing of the Josephson vortices in layered
superconductors warrants a specialized review, provid�
ing more details and discussing important recent
results.

This short review narrowly focuses on the vortex
lattice that appears at magnetic fields applied along the
layers. In this case, the flux line winds its phase around
an area between two neighboring layers and is called a
Josephson vortex in analogy with a vortex in a super�
conducting tunneling junction. The Josephson vortex
contains out�of�plane currents that tunnel via the
Josephson effect from layer to layer. The current distri�
bution around a vortex is anisotropic. As a conse�
quence, the vortex lattice is also anisotropic: it is a tri�
angular lattice strongly stretched along the layers (see
Fig. 1). In addition, the restriction to lie between the
layers leads to commensurability effects and an energy
barrier to tilting the field away from the layers. There
are two very different regimes depending on the mag�
netic field strength Bx. The crossover field scale Bcr
separating these two regimes is set by the anisotropy
factor γ and the layer periodicity d as Bcr = Φ0/(2πγd2),
where Φ0 = hc/2e is the flux quantum. In the case of
BSCCO, this field scale is around 0.5 tesla. In the
dilute lattice regime, Bx < Bcr, the nonlinear cores of
Josephson vortices are well separated and the distribu�
tion of currents and fields is very similar to that in con�

tinuous anisotropic superconductors [24]. The dense
lattice regime is realized at high fields Bx > Bcr, where
the cores of Josephson vortices overlap. In this regime,
the Josephson vortices fill all layers homogeneously
[25]. This state is characterized by rapid oscillations of
the Josephson current and by very weak modulation of
the in�plane current. In this review, we characterize
these two lattice regimes in more detail.

We do not consider the properties of vortices gener�
ated by a magnetic field applied perpendicular to the

layers, along the c axis.
2
 The structure of a c�axis vor�

tex is very different from the structure of an in�plane
vortex. In layered superconductors, a c�axis vortex can
be viewed as a stack of weakly coupled pointlike pan�
cake vortices. Properties of the pancake vortex lattice
were also extensively explored, see, e.g., reviews [23]
and [26] and the references therein.

Several experimental techniques have been
employed to explore the Josephson vortex lattices. The
dilute stretched lattice at small fields (<100 G) has
been directly observed in YBCO with Bitter decora�
tion in [27], where the elliptical distribution of the flux
around each Josephson vortex was also seen. At high
fields (>1 tesla), the commensurability between the c�
axis parameter of the Josephson vortex lattice and the
interlayer separation leads to magnetic field oscilla�
tions, which have been observed experimentally in
underdoped YBCO in irreversible magnetization [28,
29] and nonlinear resistivity [30].

In much more anisotropic BSCCO, direct observa�
tion of Josephson vortices is not possible. However,
when the magnetic field is tilted at small angles with
respect to the layers, the c�axis field component gener�
ates the pancake�vortex stacks that preferably enter
the superconductor along the Josephson vortices

2 In the literature the layer plane and the axis perpendicular to the
layer are frequently called “ab plane” and “c axis.”
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Fig. 1. Illustration of a dilute lattice of Josephson vortices generated in a layered superconductor by a magnetic field applied along
the layer direction.
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forming chains. Visualizing the flux of these chains, it
is possible to find locations of vertical rows of the
Josephson vortices and measure the in�plane lattice
parameter ay. This was done using a variety of visual�
ization techniques, such as Bitter decorations [31, 32],
scanning Hall probes [33], Lorentz microscopy [34,
35] and magnetooptical imaging [36, 37]. These
observations have been summarized in review [38].

Most extensively, properties of the Josephson vor�
tex lattice were explored in BSCCO using c�axis trans�
port in small�size mesas [39–43]. These studies
revealed a very rich dynamical behavior of the lattice,
which is beyond the scope of this review. The very
important feature is that, due to low dissipation, the
Josephson vortex lattice can be accelerated up to very
high velocities. It is clear that understanding dynamics
is not possible without good understanding of static
lattice properties. The dynamic phenomenon closely
related to static lattice configurations is magnetic�field
oscillations of resistance for very slow lattice motion,
which have been discovered and explored in small�size
BSCCO mesas [44–48]. The oscillation period can
correspond to either the flux quantum or half the flux
quantum per junction depending on the magnetic field
and the lateral size of the mesa. An interplay between
the bulk shearing interaction and the interaction with
edges leads to very nontrivial evolution of lattice struc�
tures, which we consider in this review.

This review is organized as follows. We start in Sec.
2, where we present the energy functional and equilib�
rium equations for the phase and vector potential. In
Sec. 3, we describe the structure and energetics of a
single flux line. In Sec. 4, we discuss the dilute JVL and
consider in detail the role of layered structure in
selecting lattice configurations. The properties of the
dense JVL at high fields are considered in Sec. 5. In
this regime, the structure and energy of the lattice can
be evaluated analytically using an expansion with
respect to the Josephson coupling. In that section, we
also review the magnetic field dependence of lattice
configurations and oscillations of the critical current
in finite�size samples. Elastic properties of both dilute
and dense lattices are discussed in the corresponding
sections. In Sec. 6, based on the elastic energies, we
review effects caused by thermal fluctuations.

2. ENERGY FUNCTIONAL AND EQUATIONS 
FOR THE SUPERCONDUCTING PHASES

AND VECTOR POTENTIAL

Theoretical analysis of the Josephson vortex matter
in layered superconductors is based on a phenomeno�
logical model in which only the phase degree of free�
dom of the superconducting order parameters is taken
into account and its amplitude variations are
neglected,

FLLD φn r||( ) A r( ),[ ] d
3r B2

8π
�����∫=

(1)

where E0 = d/(16π3 ) defines the in�plane phase

stiffness and EJ = E0/γ2 = d/(16π3 ) is the phase
stiffness for smooth interlayer phase variations, λab,
and λc are the components of the London penetration
depth, and γ = λc/λab, is the anisotropy factor. The z
component of the vector potential enters the tunneling

term in the form
3
  = (2e/�c) .

Near the transition temperature, the above phase
model can be obtained from the celebrated
Lawrence–Doniach model [49] by fixing the order�
parameter amplitude (London approximation). How�
ever, the model is actually more general and describes
Josephson properties of a layered material in the whole
temperature range. Starting from the phase model, a
rich variety of lattice properties can be derived, which
we review in this article.

Subject to some given boundary conditions, the
configuration of {φn, A} is determined by minimizing
the free energy. This leads to a set of differential equa�
tions; for example, minimizing with respect to the
phase gives the current�conservation condition

(2)

with the gauge–invariant phase difference defined as
 =  – φn + . In this equation, the

Josephson length ΛJ = γd appears for the first time.
This length plays a very important role in layered
superconductors because it determines the scale over
which the phase can relax to minimize the Josephson
coupling energy without costing too much energy in
the gradient term. Three more equations result from
minimizing with respect to the three components of
the vector potential. We can write these in terms of the
electric current density by using the Maxwell equation
j = (c/4π)∇ × (∇ × A), which gives

(3)

(4)

where J||, n is the 2D current density in the nth layer
and  is the current density in the  direction

3  Here e is chosen to be positive, e > 0, i.e., the charge of an elec�
tron is –e.

+ d
2r||
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2
���� ∇||φn

2π
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∫
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EJ
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Jn n 1+, jJ ϕn n 1+, ,sin–=

Jn n 1+, ẑ
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between the nth and (n + l) th layers, which has the
maximum value

(5)

The four equations (2)–(4) are the starting point
for finding the structure of vortices in layered super�
conductors. In fact, we can make the job of solving this
set of equations slightly clearer by combining them
into a differential equation for the gauge�invariant
phase differences alone. This is done by using the gen�
eral result

(6)

and combining this with (2) and (4) to arrive at

(7)

Solving this equation then gives the entire solution for
currents by using (4) to find , and the conserva�
tion law

(8)

to find J||, n.

3. STRUCTURE OF A JOSEPHSON VORTEX
IN A LAYERED SUPERCONDUCTOR

If we place a flux line directed along the layers, the
singularity associated with the vortex core can be
avoided by placing the center in the insulating layer
between two superconducting layers (first noticed by
Bulaevskii [50]). The structure of the “core” is similar
to the structure of the phase drop across a flux line in a
two�dimensional Josephson junction [51]. This well�
studied problem has a solution where the phase differ�
ence across the two layers drops by 2π over a distance

of the Josephson length ΛJ.
4
 For the 3D layered super�

conductor, this length is given by ΛJ = γd, and we can
think of a central region γd wide and d high as the core
of an in�plane vortex. Beyond this core, the flux den�
sity and currents are quite similar to those for a contin�
uous anisotropic superconductor [24]. The screening
by z�axis currents is much weaker than that by in�
plane currents, and the flux line is stretched into an
ellipsoidal shape with a large width ~λc along the lay�
ers. Even though only the “core” resembles the vortex
in a 2D Josephson junction, it has become common in

4 This characteristic length was noted soon after the discovery of
the Josephson effect [82].

jJ
2πcE0

Φ0 γd( )2
���������������� .=

4πd
c

��������Jn n 1+, z ∇ ∇ A×( )×[ ]zd

nd

n 1+( )d

∫=

=  ∇|| A|| n 1+, A|| n,–( )⋅
Φ0

2π
�����∇||

2χn n 1+, ,–

∇||

2ϕn n 1+,
1

λc
2

���� ϕn n 1+,sin 1

γd( )2
����������+ +

× ϕn 1+ n 2+,sin 2 ϕn n 1+,sin– ϕn 1– n,sin+[ ] 0.=

Jn n 1+,

∇|| J|| n,⋅ Jn n 1+, Jn 1– n,–=

the literature to label the entire flux line with this ori�
entation a Josephson vortex.

We now consider now a flux line directed along the
x axis. The general structure of this Josephson vortex
was first described by Bulaevskii [50]. The center of the
vortex lies between two layers, such that there is no
core with suppressed amplitude of the order parame�
ter, while the structure at large distances from the cen�
ter is similar to a conventional flux line. The phase
around the vortex is not given trivially by symmetry,
but is a solution of nonlinear equations (2). The most
convenient path to a quantitative solution is to sepa�
rate the problem into two different scales: At large
scales, we can ignore the nonlinearity, and there is an
analytic solution. At small scales, the numerical solu�
tion is simplified by ignoring the screening contribu�
tion of the vector potential. Fortunately, for λab/d � 1,
there is a large region of intermediate scales where
both approximations work well, allowing us to match
the small�scale and long�scale solutions.

We consider a vortex centered between layers 0
and 1, and y = 0, which is defined by the limiting val�
ues

(9)

This corresponds to the following conditions for the
interlayer phase difference:

(10)

To obtain the current and field distributions, we
first derive a useful exact equation for the magnetic
field. The current components in (3) and (4) can be
represented as

(11)

(12)

where  is the average magnetic field between
the layers n and n + 1 and ∇n is a difference operator
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⎨
⎧
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⎨
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∇nAn ≡ An + 1 – An. Collecting the combination

(4π/c)(–  + ( /d)∇nJy, n), we obtain

(13)

with An ≡ An + 1 + An – 1 – 2An. The difference of

 and sin  decays outside the nonlinear
core and satisfies the relation

(14)

In the continuum limit, the right�hand side of (13)
therefore converts into Φ0δ(y)δ(z) and (13) transforms
into the usual equation for the vortex magnetic field [52]

(15)

which gives

(16)

The current densities outside the core region are also
given by standard formulas for anisotropic supercon�
ductors

(17)

(18)

These results should be valid as long as the linear
approximation for the sine of the phase difference is
good. To find the range of applicability for this approx�
imation, we compare the last equation to (4), which
near the vortex center, gives

(19)

indicating that the linear theory breaks down at (y/γd)2 +
n2 ~ 1. This condition therefore sets the boundary of
the nonlinear core.

λc
2∇yJn n 1+, λab

2

1 λc
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2
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n n 1+,

=  
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2πd
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2
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∫
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=  ϕn 1+ n,
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∞
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2∇y
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y2
/λc

2 z2
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2
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The above analysis shows that the Josephson vortex
is characterized by two sets of length scales. A region
where the interlayer phase difference is large defines
the nonlinear core of the vortex. In the z direction, this
region is essentially localized within the central junc�
tion and in the y direction, it spreads over the Joseph�
son length γd. At scales , /γ � d, the vortex struc�
ture is described by the anisotropic London theory. In
addition, we can neglect screening effects in a wide
region where the currents around the vortex decay as
1/r (although the current pattern is strongly stretched
along the layers). Screening of the currents and mag�
netic field becomes important at the length scales  ≈
λab, and  ≈ λc, which are much larger than the cor�
responding boundaries of the nonlinear core.

Due to this vortex structure, a quantitative analysis
can be obtained with more ease by introducing an
intermediate scale Rint, with d < Rint < λab, such that at

the distance  = Rint from the vortex cen�
ter, both nonlinearity and screening may be ignored.
We then consider the small�distance region

 < Rint (containing the nonlinear core)

and the large�distance region  > Rint

(where screening will become important) separately.
At small distances, we can neglect screening. In the
London gauge ∇ ⋅ A = 0, this means that the vector
potential A can be dropped and the vortex is described
in terms of in�plane phases φn(y) only, which satisfy
the equation (from (2))

(20)

and boundary conditions (9). These conditions are
satisfied by our knowledge that outside the nonlinear
core, where (n – 1/2)2 + (y/γd)2 � 1, the phase has to
approach the scaled version of the usual form relating
to the angle around a vortex,

(21)

Multiplying (20) by dφn/dy, summing over n, and per�
forming an indefinite integral over y, we derive the fol�
lowing exact relation for all y:

(22)

which is analogous to the first integral of a second�
order differential equation with one variable. For an
isolated Josephson vortex, the constant is zero. In
contrast to the single�variable case, this relation does
not help us to find the exact solution of coupled non�
linear equations (20), and we have either to use some
approximate solution or to solve it numerically. Rela�

z y

z
y

z2 y/γ( )2+

z2 y/γ( )2+

z2 y/γ( )2+

γd( )2d2φn

dy2
�������� φn 1+ φn–( )sin+

– φn φn 1––( )sin 0=

φn
Jv y( ) –arctan γd n 1/2–( )

y
�����������������������⎝ ⎠

⎛ ⎞ .=

γd( )2 dφn
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�������⎝ ⎠

⎛ ⎞
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2 1 φn 1+ φn–( )cos–( )–
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∑  = const,
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tion (22) can, however, be used to test the accuracy of
the approximate and numerical solutions.

A simple approximate solution has been proposed
by Clem and Coffey [52] (the CC solution), who used
the ansatz

(23)

for the magnetic field and found that the best approx�
imation for the core structure is achieved by selecting
the cut off ycc = γd/2. This field distribution allows
obtaining the distribution of the phase difference

(24)

where Rn(y) = . In particular, at
γd � y � λc, this corresponds to φ1(y) ≈ –arctan(γd/2y).

The accurate numerical structure for the core was
obtained in [52]. Figure 2 presents a visualization of
this numerical solution, and we compare the phase
difference in the central junction to that from the CC
solution in Fig. 3. The numerical solution is character�
ized by the following properties. The maximum in–
plane phase gradient is given by

(25)

(the CC solution gives γd (dφ1/dy)y = 0 = 2) and the
maximum Josephson current flows at the distance
ymax = 0.84γd from the vortex center (the CC solution
gives ymax = ycc = 0.5γd). The maximum magnetic field
in the vortex core is given by

(26)

Bx
Φ0

2πλcλab

����������������K0
y2 γ2z2 ycc

2+ +
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⎜ ⎟
⎛ ⎞
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,sin
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1.10=

Bx
0 1, y = 0( )

Φ0

2πλcλab

����������������
λab

d
������⎝ ⎠

⎛ ⎞ln 1.03+ .≈

The asymptotic limits for the phase difference in the
central junction are

(27)

Outside the core, we can calculate the correction
δφn(y) to the continuum–limit phase asymptotics (21)
by treating the discreteness and nonlinearity of the
Josephson current perturbatively (see Appendix B).
This gives

(28)

where R = , and the constant
Cδφ ≈ 4.362 is found from comparison with the numer�
ical solution.

We can find the energy per unit length of the
Josephson vortex by inserting this solution into (1).
The simplest method [53] is again to split the energy
into two contributions: one from the region at large
distances where the linear approximation is valid, and
one from small distances where we need the numerical
solution, but can ignore the contributions of A to the
current (i.e., ignore screening). The first is found ana�
lytically, while the second needs a numerical integra�
tion. The final result is (see also [54]),

(29)
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−3 −2 −1 0 1 2 3

Fig. 2. Visualization of the numerically computed struc�
ture of an isolated Josephson vortex. The arrows represent
the current distribution (half the interlayer distance corre�
sponds to maximum Josephson current). The greylevel
codes for the cosine of the interlayer phase difference. The
scale in the y�direction is in units of the Josephson length
ΛJ = γd.
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Fig. 3. Sine of the phase difference between the central lay�
ers of the Josephson vortex. For comparison, the approxi�
mate solution of Clem and Coffey [52] is also shown.
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with ε0 = /(4πλab)
2. This energy determines the

lower critical field Hc1, x above which Josephson vorti�
ces are generated:

(30)

To summarize, the solution for a Josephson vortex
presented here is very similar to the usual flux lines in
isotropic superconductors, but stretched by the factor
γ in the y�direction. The reason for this similarity is
that the linear approximation to the Josephson rela�
tion works well away from the vortex center. The
important feature, however, is that at the center of the
vortex there is no normal core, but rather a phase drop
of nearly 2π across the central junction over a distance
of γd.

3.1. Line�Tension Energy of Josephson Vortex

In this section, we consider the line�tension energy
of a distorted Josephson vortex, an important parame�
ter that determines thermal wandering of the vortex
line and its response to pinning centers. We consider a
kink�free vortex located in between the layers 0 and 1
and defined by the planar displacement field u(x).
Because the energy of the straight vortex does not
depend on its orientation inside the layer plane, for
very smooth distortions with the wavelength larger that
λc, the line–tension energy is simply determined by
the line energy in (29),

This simple result, however, is of limited interest,
because most properties of the vortex are determined
by deformations with smaller wavelengths,

/  ~  � 1/λc. In this range, the line�ten�
sion energy acquires nonlocality, a typical feature of
vortex lines. An accurate calculation of the line ten�
sion for this regime presented in Appendix A leads to
the result

(31)

with εJ ≡ E0/γd and Ct ≈ 2.86. The important feature is
the logarithmic dependence of the efficient line ten�
sion on the deformation wave vector, which is a conse�
quence of nonlocality.

4. DILUTE LATTICE, Bx < Φ0/2πγd2

When the Josephson vortices are well separated,
the linear and continuous approximation can be
applied to the energy functional (1) everywhere except

Φ0
2
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in the core regions, which reduces it to the anisotropic
London model

(32)

This means that the lattice solution is just a linear
addition of single flux�line solutions and the lattice
energy is determined by this London model. To under�
stand the nature of the ground state, it is useful to
apply the rescaling trick [55, 56]

(33)

which in the case of zero z�component of the magnetic
field precisely reduces the system to the isotropic state
[24]. Therefore, the ground state configuration in
scaled coordinates is given by a regular triangular lat�
tice. In real coordinates, this state corresponds to the
triangular lattice strongly stretched along the direction
of the layers.

Within the anisotropic London model, the lattice is
degenerate with respect to rotation in scaled coordi�
nates. In real coordinates, this corresponds to an
“elliptic rotation” illustrated in Fig. 4. In particular,
there are two aligned configurations, in which Joseph�
son vortices form vertical stacks along the z axis (see
Fig. 5). For these configurations, the vertical distance
between the Josephson vortices in the stacks, az, and
the separation between the stacks, ay, are given by

(34)

where the constant β is respectively equal to 2  and

2/  for the upper and lower configuration in Fig. 5.
The interaction energy of the Josephson vortex lat�

tice can be reduced to the interaction energy of an
Abrikosov vortex lattice using the scaling trick. This
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r̃ y γz,( ) and Ã Ay Az/γ,( ),= =

az βΦ0/ γBx( ), ay γΦ0/ βBx( ),= =

3

3

(a) (b)

z

yy~

z~

Fig. 4. Ground�state lattice configuration for an in�plane
field and its rotational degeneracy within the anisotropic
London model in (a) scaled coordinates and (b) real coor�
dinates. The ellipse aspect ratio corresponds to the anisot�
ropy factor ≈3, much smaller, e.g., than the anisotropy of
BSCCO.
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energy must be added to the self energy of each
Josephson vortex (29), which, in the intermediate field

regime Hc1, x �  � , gives the result

(35)

The “elliptic rotation” degeneracy is eliminated by
the layered structure of the superconductor. There are
several different mechanisms of this elimination. First,
due to the strong intrinsic pinning, the vortex centers
must be located in between the layers. This limits the
possible lattice orientations. A second, less trivial,
mechanism is from the corrections due to the discrete
lattice structure to the vortex interactions. The degen�
eracy is also eliminated by thermal fluctuations,
because Josephson vortices mostly fluctuate along the
layer directions and this selects preferential lattice ori�
entations. All these mechanisms are considered in
detail below.

4.1. Selection of Ground�State Configurations
by the Layered Structure

As the centers of the Josephson vortices must be
located between the layers, the layered structure plays
a crucial role in the selection of the ground�state lat�
tice configurations. The Josephson�vortex lattice is
commensurate with the layered structure only at a dis�
crete set of magnetic fields. Due to the “elliptic rota�
tion” degeneracy of the lattice within the London
approximation, the family of commensurate lattices
includes lattices aligned with the layers (see Fig. 5), as
well as misaligned ones. To make a full classification of
commensurate lattices, we consider a general lattice
shown in Fig. 6a [57, 58]. The lattice is characterized
by three parameters: the in�plane period a, the dis�
tance between vortex rows in the z direction b = Nd,
and the relative shift between the neighboring vortex
rows in qa.

Bx B
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fJl
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The lattice shape is characterized by two dimen�
sionless parameters, q and the ratio r = b/a. The lattice
parameters are related to the in�plane magnetic field
Bx as Bx = Φ0/(ab). The two aligned structures in Fig. 5
correspond to q = 1/2. As the replacement q  1 – q
corresponds to a mirror reflection with respect to the
xz plane, every structure with q ≠ 1/2 is doubly degen�
erate. In addition to giving the general ground states,
these lattices describe multiple metastable states with
unique properties studied in [57, 58], which we review
below.

We now classify the exactly commensurate lattices
to give the set of commensurate fields. An equivalent
geometrical analysis has been done in [59] following a
somewhat different line of reasoning, but with the
same final result for the commensurate fields. The
analysis of commensurability conditions can be done
most conveniently in scaled coordinates (33). In these
coordinates, the ground�state configuration corre�
sponds to a regular triangular lattice with the period

 = . It is convenient to consider the
orientation of the layered structure with respect to this
lattice rather than vice versa. The layered structure fits
this lattice only if it runs along one of the crystallo�
graphic directions (see Fig. 6b). This direction (m, n)
is defined by the lattice vector em, n, which can be

ãΔ 2γΦ0/ 3Bx

Scaled coordinates Real coordinates

z~

cy

z

y~
y
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cz
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Fig. 5. The two alternative lattice configurations that are
aligned with the layers, in scaled and real coordinates.

Fig. 6. (a) General Josephson vortex lattice and its param�
eters. (b) Orientation of a layered structure with respect to
the ideal lattice (in scaled coordinates). The layered struc�
ture fits the ideal lattice only if it is oriented along one of
the crystallographic directions, which is characterized by
two numbers (m, n), corresponding to the expansion of the
direction vector over the two basic lattice vectors e1 and e2.
Several possible directions are shown with the correspond�
ing indices (m, n). The layers, together with the lattice
parameters a, b, and q, are drawn here for the (3, 1) orien�
tation.
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expanded over the two basic lattice vectors: e(m, n) =
me1 + ne2. For nonequivalent directions, m and n must
be relatively prime numbers (i.e., there is no integer
other than one that divides both m and n). Any such
direction corresponds to a set of matching fields,
denoted by B(m, n)(N). We also let a(m, n), b(m, n), and
q(m, n) denote the lattice parameters corresponding to
such an orientation. Immediately, we obtain

(36)

It is useful to write the unit vector  perpendicular
to the layers in terms of e(m, n) This vector is labelled
s(m, n) in Fig. 6b and is given by

(37)

Commensurability means that the projections of the
two basic lattice vectors on s(m, n) must be integer mul�
tiples of the number of layers, i.e.,

(38)

(in scaled coordinates, the interlayer distance is γd).
Using (36) and (37), we rewrite these conditions as

(39)

(40)

These equations mean that /  = m/n. Because m
and n are by definition relatively prime, the set of
allowed  and  is simply given by  = Nm and  =
Nn. Therefore, we can represent the commensurabil�
ity condition as

(41)

which gives the following set of commensurate fields,
distances between neighboring rows b = Nd, and ratios
r(m, n):

(42)

(43)

(44)

Finding the parameter q(m, n) for a general orienta�
tion is a more complicated problem. Defining the
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direction to the nearest�row site (m1, n1) (see Fig. 6),
we have

(45)

Expressing the neighboring–row separation via
(m1, n1),

and comparing it with Eq. (43), we can see that the
pair (m1, n1) must satisfy the condition

(46)

It is well known from the theory of numbers that for
any relatively prime pair (m, n), there exists a comple�
mentary pair (m1, n1) satisfying this condition, and
there is a general recipe to find complementary pairs
based on the Euclid algorithm (see, e.g., [60]). More�
over, because the combination m1n – mn1 does not
change under the substitution m1  m1 + m, n1

n1 + n, there is an infinite set of pairs that satisfy con�
dition (46) (physically, this corresponds to different
lattice sites in the neighboring row). Therefore, the
problem to find q(m, n) can be formulated as follows:
among all pairs (m1, n1) satisfying condition (46), find
the pair that minimizes 
and use this pair in Eq. (45). (Practically, we need not
search to very high�order directions.) In the case
n = 1 and arbitrary m, the choice of (m1, n1) is obvious,
(m1, n1) = (–1, 0), and we obtain

(47)

We stress that these results essentially rely on the
linear London approximation, which implies a very
strong inequality  � γd, or equivalently,

N  � 1. The number of vortex�free lay�
ers per unit cell is given by N – 1. The case N = 1 rep�
resents a special situation where all the layers are filled
with vortices and are equivalent. It is interesting to
note that even for a dilute lattice, we can have Joseph�
son vortices in every layer (N = 1) in the case of high�
order commensurability (m, n � 1). In an ideal situa�
tion, the lattice transfers with changing the magnetic
field between different commensurate configurations
via a series of first�order phase transitions. The num�
ber of competing states rapidly increases as the field
decreases.

A full analysis of the structural evolution requires
consideration of the energy. In the London limit, a
very useful expression for the energy of the general lat�
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�����ãΔ m1n mn1–

m2 mn n2+ +
����������������������������������= =

m1n mn1– 1.=

mm1 m1n mn1+( )/2 nn1+ +

q m 1,( )
m 1/2+

m2 m 1+ +
���������������������.=

ãΔ
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tice in Fig. 6a has been derived in [60]. We outline this
derivation and present the final result in a somewhat
different form. For the lattice in Fig. 6a, the interac�
tion energy in the London limit is given by

Using the formula

we can sum over k and integrate over y, leading to

f Jl
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with gb(z) =  and r = bγ/a. This
expression significantly simplifies in the intermediate
region b � 2πλab, where we can use the expansion

and drop b2/(2πλab)
2 in gb(z) meaning that gb(z)  rz.

This allows us to represent the interaction energy in
this regime as [57]

(48)

with γE = 0.5772 being the Euler constant and

(49)

The dimensionless function GL(r, q) depends only on
the lattice shape. Its absolute minimum corresponding

to the triangular lattice is given by GL( /2, 1/2) =
⎯0.4022. A peculiar property of GL(r, q), following
from the rotational degeneracy, is that this function
also has this value for the whole set of pairs (r, q) =
(r(m, n), q(m, n)) corresponding to the different lattice
orientations. In particular, for (m, n) = (m, 1), we have

This function also has very peculiar behavior at small
r, which is important for the statistics of metastable
states [58]: at r  0 it acquires peaks at all rational
values of q = k/l. Large�order peaks with the denomi�
nator l develop as r drops below 1/(2πl).

For layered superconductors, we have

with  = Φ0/(γd2) and, adding the energy of isolated

Josephson vortices, we can write the total energy of the
lattice as

(50)

with h ≡ 2πBx/  and r = N2h/2π. For a given h, the

ground state configuration is determined by the mini�
mum of GL(N2h/2π, q) with respect to discrete N and
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Fig. 7. Upper panel: The field dependence of the reduced
energy functions for the London model (GL, upper curve)
and the full Lawrence–Doniach model (G – Gfit, lower
curve). For clearer comparison, we subtracted from G(h)
its fit at small h given by Eq. (58). Values of commensurate
fields h(m, n)(N) are shown in the top axis and the corre�
sponding indices for several of them are written in the for�
mat (m, n)N. As expected, GL reaches its absolute mini�
mum for every h(m, n)(N). The lower panel shows the field
dependence of N for the ground state for both models
(stripes for the London model and circles for the
Lawrence–Doniach model). The same grey level codes
the value of N in the upper panel and the London�model
plot in the lower panel.
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continuous q. As follows from Eq. (42), perfect fits
where GL reaches its absolute minimum occur at the
set of reduced fields h = h(m, n)(N), where

(51)

At these fields, this energy reproduces the result in
(35). The field dependence of GL for the ground state
is shown in Fig. 7. The continuous London model
does not accurately describe layered superconductors
at high fields. To obtain lattice structures in this
region, one has to consider the more general
Lawrence–Doniach model. The transition between
the aligned lattices have been studied within this
model by Ichioka [61]. However, our analysis in the
next section shows that at many fields, the true ground
state is not given by an aligned lattice.

4.2. Evolution of Ground�State Configurations
within the Lawrence–Doniach Model

The accurate analysis of lattice configurations
within the Lawrence–Doniach model which we
report in this section was only published in short pro�
ceeding [62]. Independently, such numerical analysis
was done by Nonomura and Hu [63], with fully con�
sistent results.

At high in�plane magnetic fields, the spatial varia�
tions of the field are very small and can be neglected in
the first approximation. In this limit, the only relevant
degrees of freedom are the superconducting phases
and the relevant part of LLD energy (1) per unit vol�

ume, fφ ≡ FLLD/(LxLyLz) – /(8π), can be written as

(52)

To simplify the analysis, we introduce the reduced in�
plane length  ≡ y/γd and the reduced magnetic field
h ≡ 2πγd2Bx/Φ0, which yields

(53)

with εJ ≡ E0/γd. Varying this energy with respect to the
phases φn( ), we obtain an equation for the equilib�
rium phase distribution (equivalent to (2) when we
ignore the spatial dependence in Bx):

(54)
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We again consider a general lattice shown in Fig. 6a
with the in�plane period a, with N layers between
neighboring rows, and with the relative shift qa
between relative rows, where a and N are related to the
reduced field as h = 2πγd/Na. It is sufficient to find the
solution for the phase in one unit cell, 0 < y < a.
1 ≤ n ≤ N, using appropriate quasiperiodicity condi�
tions for the phase. The total lattice energy per unit
volume can be represented as

(55)

where the reduced energy u(N, q, h) per unit cell is
given by

(56)

Using a relaxation method to solve (54) numerically
within one unit cell, we can find the energy u for any
given values of N, q, and h. To match London repre�
sentation (48), we write u(N, q, h) in the form

, (57)

where the function G(N, q, h) defined by this equation
approaches the London limit GL(r = N2h/2π, q) as
h  0.

We first consider the influence of the layered struc�
ture at small fields. As shown in Appendix B, in the
lowest order with respect to h, the layered structure
gives an orientation�independent correction to energy,
G ≈ (h/32)ln(Ch/h). In the higher (quadratic) order,
the layered structure generates an orientation�depen�
dent correction to the lattice energy, leading to a
breakdown of the “elliptic�rotation” degeneracy of
the lattice. To study this effect quantitatively, in Fig. 8,
we plot the computed field dependences of G(N, q, h)
for several lattice orientations at the corresponding
reduced commensurate fields h(m, n)(N) given by (51).
At small h, h < 0.05, neglecting a very weak depen�
dence on orientation, we can accurately fit the correc�
tion from the layeredness as

(58)

It follows that among the two aligned structures shown
in Fig. 5, the layers favor the lower structure with indi�
ces (1, 1). However, for h < 0.1, the energy difference
between the two structures is tiny and external factors
may select the lattice orientation in real samples. On
the other hand, we can expect that at sufficiently large
fields, the ground�state configuration is selected by the
layered structure even in real samples.

Energy corrections due to the layered structure
favor lattice stretching along the layer direction and
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shift down the matching fields. This effect is strongest
for the aligned lattice (1, 0) and is illustrated in Fig. 9.
In this figure, we show the field dependences of
G(N, h, 0.5) for different N. When a smooth function
is subtracted from these dependences, local minima

are realized at fields (N) that are smaller than the

London matching field h(1, 0)(N). The shift (N) –
h(1, 0)(N) rapidly decreases with increasing the mag�
netic field. We found that this shift is described by the
equation

For other lattice orientations, the shift is smaller but
still noticeable. To quantify the energy difference
between the aligned lattices due to the layered struc�
ture, we fit their energies at the shifted matching field
for h < 0.1 to smooth curves and subtract these curves.
This procedure gives G(1, 1) – G(1, 0) ≈ –0.011h2.

We can now explore the evolution of the ground�
state configuration by direct minimization of the
energy with respect to the lattice parameters N and q
defined in Fig. 6. For this, we have computed the
reduced ground�state energy defined as G(h) ≡
minN, q[G(N, q, h)]. We checked that if we consider
only aligned lattices, the results of Ichioka [64] are
reproduced for the transition fields between lattices
with different periods N in the case of large anisotropy.
For comparison, we also made a similar calculation for
the London model and computed the field depen�
dence of the function GL(h) = minN, q[GL(r =
N2h/(2π), q)], where GL(r, q) is defined in Eqs. (48)
and (49). In Fig. 7, we compare field evolutions of
these ground�state reduced energies and the corre�
sponding c�axis period N. For clearer comparison, we
subtracted from G(h) its fitted correction from

GL( /2, 1/2) at small h given in (58). Values of the
London commensurate fields h(m, n)(N) are shown on
the top axis with several low–order fields marked by
corresponding indices using the format (m, n)N. As
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Fig. 8. Left panel: Field dependence of the reduced�energy function G(N, h, q) for several lattice orientations (m, n) at the com�
mensurate field h(m, n)(N). In the right panel, to enlarge small differences, we plot the difference between G and its fit obtained
using all data for h < 0.05.
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expected, GL(h) reaches its absolute minimum for
every h(m, n)(N). We can observe several interesting
properties. Because the lattice orientation with indices
(m, n) = (1, 0) is not favored by the layered structure,
several low�N configurations, 3 ≤ N ≤ 6, expected at
h = h(1, 0)(N) are skipped. However, as can be seen
from the inset in Fig. 10, for N = 5 and 6, the ground�
state energy is smaller than the energies of these states
at h = h(1, 0)(N) only by a tiny value. For h < 0.2, the
actual evolution of the lattice structure starts to
roughly follow the London route (except for skipped
state (1, 0)6 near h = 0.16) but with a small negative
offset, i.e., we again see that the matching fields are
systematically shifted down in comparison with their
London values.

The field dependence of the energy function
G(N, q, h) in an extended field range is shown in
Fig. 10 for the ground state and competing states.
Each curve corresponds to the minimum of G(N, q, h)
with respect to q at fixed h and N and is marked by its

value of N. We also show the first six lattice configura�
tions that are realized with decreasing the field. The
inset in the figure blows up the low�field region. We
can see that many lattice configurations compete for
the ground state at small fields and at several fields
(e.g., at h ≈ 0.19, 0.137, 0.105…), one or more lattice
configurations have energies very close to the ground–
state energy. We also note that there are several
extended field ranges where in the ground state all lay�
ers are homogeneously filled with vortices (N = 1)
even in the region of the dilute vortex lattice, e.g.,
0.115 < h < 0.17 and 0.21 < h < 0.38.

We see that an accurate consideration within both
London and Lawrence–Doniach models shows that
the ground state of the Josephson vortex lattice at low
temperatures does not give any preference to the lat�
tices aligned with the layers. Therefore, for equilib�
rium field dependences we cannot expect to observe
any strong features at the matching fields of these lat�
tices, B(1, 0)(N) and B(1, 1)(N) given by Eq. (43). Never�
theless, clear commensurability oscillations have been
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observed experimentally in underdoped YBCO in irre�
versible magnetization [28, 29] and nonlinear resistiv�
ity [30]. The period of these oscillations corresponds
to the fields B(1, 0)(N), indicating that in this material,
the aligned lattice (1, 0) occurs to be preferable for
some reason. We note that in real materials, due to
small differences between the energies of different
configurations, aligned lattices can be selected by
external factors, such as interaction with correlated
disorder (twin boundaries or dislocations) or the sam�
ple surface. We also see in what follows that the aligned
lattice with indices (1, 0) is favored by thermal fluctua�
tions. Finally, we mention the work of Ikeda and Isotani
[64], who performed similar analysis of the ground�
state configurations for the field applied along the layers
within the lowest Landau level approximation.

4.3. Properties of Metastable States
in the London Model

Josephson vortices can slide easily along the layers,
but there is a huge barrier for the motion across the
layers. This property makes it difficult to equilibrate
the lattice. It also leads to the appearance of a very
large number of metastable states. The properties of
these states have been considered in [57, 58]. System�
atically, metastable states at a fixed c�axis period can
be sampled by first slowly cooling down the supercon�
ductor at a fixed magnetic field and then in a second
step decreasing the magnetic field at a low tempera�
ture [58]. We assume that the prepared starting config�
uration is the aligned lattice. As the c�axis period N is
locked by the layers, the lattice stretches along the lay�

ers with lowering the field, i.e., the ratio r = b/a
decreases. During stretching, these fixed�N metasta�
ble states go through a sequence of nontrivial struc�
tural transformations. In the London regime, the
aligned configuration becomes unstable at r0 ≈
1.51/(2π) ≈ 0.24 [57]. This instability is driven by the
repulsion between neighboring vortices in the vertical
stack. At low r < r0, the parameter q continuously
decreases starting from 1/2 to lower values. We found
that the layeredness stabilizes the aligned structures:
the critical ratio decreases to 0.231 at N = 3 and to
0.224 at N = 2. It is important to note that the shear
instability occurs in the ground state only for N = 1 (we
consider this structural phase transition in detail
below). At higher values of N, this instability only
occurs when the state for this given N is metastable
with respect to other values of N. This instability is
considered in detail below.

The statistics of metastable states has been explored
in detail in [58], where the similarity to the phyllotaxis
phenomenon in biological systems has been pointed
out. For every r, we can find all local minima qi(r) of
the energy function G(r, q) with respect to q and plot
all these minima in the qr plane (see Fig. 11). The
obtained pattern is quite peculiar. At r > r0, the only
minimum is at q0(r) = 1/2. Below r = r0, this trajectory
symmetrically splits into two. As r decreases further,
many more minima appear forming a complex hierar�
chical structure. The pattern can be viewed as a series
of “quasibifurcations” occurring near rational values
of q. “Quasibifurcation” corresponds to the appear�
ance of a new branch below a certain value of r in the
vicinity of the old branch. The branches turn at the
points (q(m, n), r(m, n)) corresponding to ground states.
The evolution of the initial state is described by the two
main trajectories symmetrically split from q = 1/2.
The trajectory with q > 1/2 “quasi�bifurcates” at q =
Fj/Fj + 1 where Fj are the Fibonacci numbers and

approaches the “golden ratio” (  – 1)/2 ≈ 0.618 as
r  0. It goes through ground states with the indices
also described by the Fibonacci sequence, (m, n) =
(Fj + 1, Fj). Unfortunately, these exciting predictions
have never been verified experimentally because there
is no direct way to probe the structure of the Josephson
vortex lattice.

4.4. Elasticity of a Dilute Josephson Vortex Lattice

Josephson vortices easily slide along the layers but
motion across the layers is strongly suppressed by
intrinsic pinning from the layers. Due to the intrinsic
pinning, z�axis fluctuations of the vortex lines occur
via kink formation. In moderately anisotropic layered
superconductors, such as YBCO, in which the c�axis
coherence length is larger than or comparable with the
interlayer spacing d, the intrinsic pinning potential
V(uz) can be described as a cosine function of the z�
axis vortex displacements V(uz) = –V0cos(2πuz(x)/d).
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Fig. 11. Levitov’s hierarchical plot of metastable states in
the qr plane [58] (in this plot, q is selected within the inter�
val [0.5, 1]). Each dotted curve is obtained from the local
minima of the function GL(r, q) with respect to q at a fixed
r. New branches appear as a result of “quasibifurcations”.
Each “quasibifurcation” is associated with a rational num�
ber. The branches turn at the points (q(m, n), r(m, n)) corre�
sponding to ground states (marked by squares and labelled
by the indices mn in the plot).
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But such description becomes inadequate in strongly
layered materials, where the structure of kinks is very
similar to the structure of a pancake vortex.

In strongly layered materials at low temperatures,
we can neglect kink formation and take only in�plane
lattice deformations u(r) ≡ uy(r) into account (planar�
fluctuations model). In this case, we can derive the
nonlocal elastic energy in the k�space as

(59)

with the elastic moduli

(60)

(61)

(62)

While the tilt [c44(k)] and compression [c11(k)] moduli
are not sensitive to the exact lattice structure, the for�
mula for the shear modulus c66 is valid only for perfect
matching between the Josephson vortex lattice and
layered structure, which is achieved at matching fields
(42). For a general lattice shown in Fig. 6a we can
derive a more general expression for c66 using repre�
sentation (48)–(49) for the lattice energy [57] and the
relation between lattice deformation and change of the
parameter q, δq = rdu/dz,

(63)

with

This formula reproduces the result in (60) for the com�
mensurate configurations (r, q) = (r(n, m), q(n, m)). It also
describes instability of the aligned configuration
(q = 1/2) at r ≈ 0.24 [57].

The softest mode in the planar model corresponds
to shearing between neighboring planar arrays of
Josephson vortices. The harmonic approximation
breaks for this mode first. The simplest extension of
the linear elastic energy that describes strong interpla�

Fel
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nar fluctuations amounts replacing the continuous
displacement field u(r) by the displacement of the pla�
nar arrays uj(x, y) ≡ u(x, y, jb) and replacing the shear
term in the energy by the nonlinear interaction term

Such an extension has been used to study the strong–
fluctuation region [65].

5. DENSE LATTICE, Bx > Φ0/2πγd2

The distance between Josephson vortices decreases
as the magnetic field increases, and at the field B ~
Bcr = Φ0/2πγd2 = /2π becomes of the order of the

vortex�core size. In contrast to the Abrikosov vortex
lattice, for which overlap of the vortex cores marks the
disappearance of superconductivity, for the Josephson
vortex lattice this field just marks a crossover to a new
regime, the dense Josephson vortex lattice. The exist�
ence of this regime was pointed out by Bulaevskii and
Clem [25]. In the dense Josephson vortex lattice, the
gauge�invariant phase difference is a smoothly
increasing function of distance and the Josephson
coupling energy can be treated as a small perturbation.
This allows for the following quantitative description.

5.1. Very High Fields: Quantitative Description Using an 
Expansion in the Josephson Coupling

At high fields Bx > Bcr, vortices homogeneously fill
all the layers. This means that all layers are equivalent
and the in�plane lattice period is  = 2π/h (see
Fig. 12). When the strong inequality Bx � Bcr (h � 1)
is satisfied, Eq. (54) for the phases can be solved using
an expansion with respect to the Josephson currents.
In the zeroth order, we can construct a regular lattice

d
3r

c66

2
����� ud

zd
����⎝ ⎠

⎛ ⎞
2

∫

d
2r

a2c66

2π( )2b
������������� 1 2π

uj 1+ uj–
a

����������������⎝ ⎠
⎛ ⎞cos– .

j

∑∫

B
γd

2

ã
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Fig. 12. Schematic distribution of currents in the dense
Josephson vortex lattice. The circles mark the centers of
the Josephson vortices.
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with an arbitrary translation from layer to layer by
using the form

This corresponds to the gauge�invariant phase differ�
ence

i.e., the planar lattices in the neighboring layers are
shifted by the fraction q = κ/2π of the in�plane lattice
spacing . In the first order, we obtain

which gives

Substituting this solution in (53), we obtain the energy
per unit volume up to the second order with respect to
the Josephson coupling,

(64)

We can immediately see that the minimum energy
fmin(h) = (εJ/γd2)(1 – 1/h2) is achieved at κ = π, corre�
sponding to the triangular lattice shown in Fig. 12. The
phase distribution in the ground state is given by

. (65)

From this solution, we can recover the distributions of
the in�plane and Josephson currents
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and a weak modulation of the in�plane field

A schematic distribution of the current is shown in
Fig. 12.

5.2. Dense Lattice Close to the Crossover Region. 
Structural Phase Transition

When the magnetic field approaches the crossover
field Φ0/(2πγd2), the perturbative approach of the pre�
vious section becomes insufficient and we have to
obtain a full solution of nonlinear equation (54). The
general solution for the lattice with an arbitrary phase
shift κ can be written as

(66)

where g( ) is a periodic function, g(  + 2π/h) = g( ).
that obeys the equation

(67)

The reduced energy  ≡ fφγd2/εJ can also be written in
terms of g( ):

(68)

Equation (67) does not have an analytic solution
and has to be solved numerically. Lattice configura�
tions of the dense lattice have also been investigated
using the code developed for the lattice with a general
period N. Both approaches give identical results.
Numerical investigation shows that the triangular lat�
tice with κ = π gives the ground state for h > 1.332. At
h ≈ 1.332, the system has a second�order phase transi�
tion to a lower�symmetry lattice (see lattice structures
for h = 1.35 (a) and h = 1.2 (b) in Fig. 10). The field
dependence of κ and the corresponding lattice shift q
are shown in Fig. 13. Ikeda and Isotani [64] found that
within the lowest Landau level approximation, this
structural phase transition occurs at a somewhat
higher value, h ≈ 1.4.
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In Fig. 14, to study the validity range of the high�h
approximation in the previous section, we plot the
computed field dependence of the reduced energy
together with its high�field asymptotics, derived in the
previous section. It can be seen that the perturbative
approach gives a good approximation for the energy
down to h ~ 2.

5.3. Elasticity of the Dense Lattice

In this section, we consider the deformation energy
of the dense Josephson vortex lattice in the limit h =
2πγd2Bx/Φ0 � 1. In particular, this energy serves as a
starting point for the analysis of fluctuations. We fol�
low the approach used by Korshunov and Larkin [66].
The starting point of the analysis is again the reduced
LLD energy in the phase approximation (53), which
we now rewrite for the general case of the phase
depending on both reduced coordinates  ≡ ( , ) =
r/γd:

(69)

The ground�state phase distribution is given by
Eq. (65). We now consider small deformations of the
lattice and split the total phase into a smooth part vn

and the part  rapidly oscillating in the y direction:

(70)

where we assume that dvn/d  � vn and  � 1.
Because the smooth part of the gauge–invariant phase
difference is given by h(  + (vn + 1 – vn)/h) + πn, the
quantity un = –(vn + 1 – vn)/h represents a local lattice
displacement. Substituting representation (70) in the

energy (69), expanding with respect to , and drop�
ping rapidly oscillating terms, we obtain

(71)

As  rapidly oscillates only in y direction, we keep
only its  derivative. Minimizing this energy with

respect to  gives

Substituting this solution in Eq. (71) and averaging
with respect to , we finally obtain the coarse�grained
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energy of the deformed dense Josephson vortex lattice
[69], which we write in real units:

(72)

This energy describes the phase fluctuations in a large
in�plane magnetic field. The first term is just the usual
in�plane phase stiffness energy. In the elasticity theory
language, this term represents the compression
(dvn/dy) and tilt (dvn/dx) contributions. The second
term represents the shearing interactions between the
Josephson vortex arrays in neighboring junctions. It
originates from the Josephson coupling energy and
can be viewed as the effective Josephson coupling
renormalized by the in�plane magnetic field. Roughly,
we can state that as the magnetic field increases, the
effective Josephson energy decreases as 1/h2 and the
effective Josephson length ΛJh increases linearly
with h,

(73)

For the deformation slowly changing from layer to
layer, we can expand the cosine in Eq. (72) and obtain
the harmonic elastic energy of the dense Josephson
vortex lattice in terms of smooth phase deformations:
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Fig. 14. Field dependence of the reduced energy for the
dense Josephson vortex lattice. The dashed line shows the
high�field asymptotic behavior. The arrow marks the posi�
tion of the structural phase transition at h ≈ 1.332.
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(74)

Using the relation between the phase perturbation
and lattice displacements

(75)

we can rewrite the elastic energy in a more traditional
way, via lattice deformations

(76)

with the elastic constants

where we use the notation  ≡ 2sin(kzd/2)/d. We note
that in our case, the nonlocal tilt modulus c44(kz) is
identical to the compression modulus c11(kz) and they
coincide with elastic moduli within the anisotropic

London model (61) and (62) in the limit λab � 1,
kxλc. These elastic energies (74) and (76) can be used
to study weak fluctuations and weak pinning of the
dense Josephson vortex lattice. The shear modulus is
field independent in the dense�lattice regime. It can be
verified to match the dilute�lattice result (60) at the
crossover field.

5.4. Lattice Configurations and Magnetic Oscillations
in Finite�Size Samples

In this section, we consider dense�lattice configu�
rations in finite�size samples. This study is actually
motivated by experimental observations of magnetic
oscillations in small�size BSCCO mesas with lateral
sizes 2–20 μm [44–48]. Such small�size mesas behave
as stacks of intrinsic Josephson junctions with strong
inductive coupling between the neighboring junctions.

The detailed analytic theory describing the mag�
netic field dependences of lattice configurations and
the critical current has been developed in [67]. Lattice
structures also have been extensively explored numer�
ically in [45, 47, 68, 69], and both approaches give
identical results. In a small�size sample, the lattice
structure is determined by two competing interactions:
the interaction with boundaries, which favors an
aligned rectangular configuration, and the bulk shear�
ing interaction between neighboring layers, which
favors a triangular configuration. Depending on the
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mesa width L and the magnetic field, two very differ�
ent regimes can be realized. In the large�size regime,
the vortex lattice is triangular and is only deformed
near the edges. In the small�size regime, the lattice
structure experiences a periodic series of phase transi�
tions between rectangular and triangular configura�
tions. The triangular configurations in this regime are
realized only in narrow regions near magnetic field
values corresponding to an integer number of flux
quanta per junction where the interaction with edges
vanishes. The typical width of the mesa that separates
these two regimes is given by the length ΛJh in Eq. (73),
which is proportional to the applied magnetic field.
Hence, the crossover from one regime to another is
driven by the magnetic field and the corresponding
crossover field scale is BL = BcrL/ΛJ = LΦ0/(2πγ2d3);
for Bx > BL the small�size regime is realized. The size�
field phase diagram is shown in Fig. 15. The regimes
are characterized by distinctly different oscillating
behavior of the critical current as a function of the
magnetic field. In the small�size regime, the critical
current oscillates with the period of one flux quantum
per junction, similar to a single junction. In the large–
size regime, due to the triangular lattice ground state,
the oscillation period is half the flux quantum per
junction.

The quantitative study of the described behavior is
based on reduced energy (69), which has to be rewrit�

ten for the finite�size case 0 <  <  ≡  and also
assuming that the system is uniform along the field

direction, i.e.,   . This energy has to be

supplemented with the boundary conditions at the

edges, dφn/d  = 0 for  = 0, . The important param�
eter in the case of a finite�size sample is the total mag�
netic flux through one junction, Φ = BxdL, which is
connected with the reduced magnetic field by the rela�

tion h  = 2πΦ/Φ0. In the dense�lattice limit, we again
use the representation in Eq. (70) containing the
smooth phase vn, and the rapidly oscillating compo�

nent . It is natural to assume that the interactions
with the boundaries preserve the alternating nature of
the vortex lattice. In this case, symmetry allows taking
the smooth phase in the form

(77)

where α describes the translational displacement of
the lattice and v describes lattice deformations with
respect to the triangular lattice. In particular, it can be
shown that the maximum value v( ), vmax = π/4,
describes the rectangular lattice, i.e., identical φn in all
layers up to a 2π phase shift. The rapid phase corre�

sponding to the smooth phase (77) becomes ( ) ≈
(–1)n2cos(2v)sin(α + h )/h2. Averaging with respect
to the rapid oscillations for such vn( ) gives the
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reduced energy fφ = FφΛJ/(NLxE0) per layer and per
unit length along x:

(78)

where the bulk part directly follows from Eq. (72) for
general vn( ). Varying this energy with respect to
v( ), we obtain that it obeys the static sine�Gordon
equation

(79)

with the boundary conditions

(80)

Substituting the solution of these equations in energy
functional (78) gives the energy as a function of the
lattice shift α, fφ(α). The minimum of the energy with

respect to α gives the ground state for given h and .
Higher�energy states at other values of α typically
carry a finite current. The total Josephson current
flowing through the stack is proportional to dfφ/dα.
Taking derivative of functional (72) with respect to α
and assuming that at every α it is minimized with
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respect to v(u), we obtain the total current in units
of jJΛJLx:

(81)

An important consequence of this equation is that a
nonzero current exists only if the surface deformations
v0 and vL are finite.

The general solution of Eqs. (79) and (80) can be
written in terms of the elliptic integrals, and an elabo�
rate analytic analysis is possible [67]. Here, we sum�
marize the most important results of this analysis for
two limit cases.

In the large�size regime, L � ΛJh or Bx � BL, the
smooth alternating deformation v( ) has a solution in
the form of two isolated surface solitons [67]. For
example, near the edge  = 0, such a soliton solution
decaying from the surface into the balk is given by the
well�known formula for the sine�Gordon kink

(82)

where the boundary value v0 can be found from the
boundary condition (80), leading to tan(2v0) =

cosα. Using this solution, we can find the surface
energy and surface current for the edge  = 0 as func�
tions of the lattice displacement α:

(83)
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Fig. 15. Size–magnetic field phase diagram of the confined Josephson�junction stack. The dashed line separates the large�size
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(84)

The 2α periodicity of these results is a consequence of
the triangular lattice structure: the change of α by π
corresponds to the vertical lattice displacement by one
layer. A similar solution is realized at the opposite edge

 = . Its energy and current can be obtained from

the above results using the substitution α  α + h .
For a wide stack, we can neglect the interaction
between the solitons, and the total Josephson current
is then given by the sum of two independent surface
currents,

The critical current Jc can be found as a maximum of
J(α) with respect to α, which gives the following result
in real units:

(85)

where JJ = jJLLx is the maximum Josephson current
through the sample at zero field, and the oscillating
function �(χ) has the period π and in the range 0 < χ <
π/2 can be approximated by �(χ) ≈ 0.128 +
0.888cos(χ) + 0.021cos(3χ). We can see that in this
regime, the product BxJc has the periodicity of half the
flux quantum per junction and reaches maxima at the
points Φ = dLBx = jΦ0/2 with BxJc, max ≈
1.035JJΦ0/(2πdL). This corresponds to the low�field
part of the plot in Fig. 16. All other properties of the
sample should also oscillate with the period of half the
flux quantum. Such oscillations of the flux�flow resis�
tivity in BSCCO micromesas were first detected
experimentally in [44] and later confirmed by several
experimental groups.
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In the small�size regime L < ΛJh or Bx > BL, the
interaction with edges dominates. As a consequence,
extended regions of the rectangular lattice appear in
the phase diagram (see Fig. 15). The energy of the
rectangular lattice, v = ±π/4, coincides with the well�
known result for a single junction

(86)

and has the minimum frect = –2 /h at α =
–hL/2 + δπ/2 with δ = sgn[sin(hL/2)]. An accurate
analysis [67] shows that the rectangular lattice is stable

with respect to small deformations at α = –h /2 +

π/2 in the regions  < 1/4 only if the
inequality

(87)

is satisfied. These regions are plotted in the phase dia�
gram in Fig. 15. This means that the rectangular lat�

tices first appear in the ground state at the points h  =

(k + 1/2)2π for /h ≤ l1 = arctan( )/  ≈ 0.675.
This corresponds to the dashed line shown in the
phase diagram in Fig. 15. But if L/h is only slightly
smaller than this value, the rectangular lattice
becomes unstable as the current increases and the
configuration at the critical current still corresponds to
the deformed lattice. The accurate analysis shows that
there is another typical value of the ratio L/h, L/h =
l2 ≈ 0.484, below which the rectangular lattice remains
stable up to the critical current.

In the region h � , the rectangular lattice is real�
ized in the most part of the phase diagram except nar�
row regions in the vicinity of the integer�flux quanta

lines h /2π = Φ/Φ0 = k, where the interaction with
the edges vanishes. Switching between the rectangular
and triangular lattices in the ground state occurs via a
first�order phase transition [67] at the transition fields
determined by the equation

(88)

At high fields, the critical current approaches the clas�
sical Fraunhofer dependence for a single small junc�
tion, JF(Φ) = JJ / . Two impor�
tant deviations persist at all fields and sizes: (i) Near
the points Φ = kΦ0, due the phase transitions to the
triangular lattice, the critical current never drops to
zero and actually always has small local maxima;
(ii) Away from the points Φ = kΦ0, the critical current
is reached at the instability point of the rectangular
vortex lattice and it is always somewhat smaller than
the “Fraunhofer” value JF(Φ).

In the region B ~ BL, the crossover between the two
described regimes takes place. In the oscillations of the
critical current, this crossover manifests itself by break�
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ing the Φ0/2 periodicity: the maxima at the half�integer
flux�quantum points Φ = (k + 1/2)Φ0 progressively
become larger while the maxima at the integer flux�
quantum points Φ = kΦ0 become smaller. This cross�
over behavior of the critical current is illustrated in
Fig. 16. Such behavior was indeed observed experi�
mentally in very narrow BSCCO mesas [45, 47, 48].

6. THERMAL FLUCTUATIONS

In this section, we consider thermal fluctuations
effects for the Josephson vortex lattice. Confinement
of the vortex cores in between the layers leads to strong
suppression of the vortex motion across the layers,
which can only occur via formation of kinks. There�
fore, as a first step, we can neglect these energy�costly
displacements and consider only planar fluctuations of
vortices along the layers. This simple model describes
fluctuation behavior in the most part of the field–tem�
perature phase diagram, but it occurs to be insufficient
for describing the melting transition of the lattice. In
general, thermal effects for Josephson vortices are
much weaker than for a pancake�vortex lattice, and
phase transformations are expected only in the vicinity
of the transition temperature. On the other hand, due
to the intrinsic pinning potential and involvement of
kink excitations, the overall behavior near the melting
line is rather complicated and, in spite of quite exten�
sive theoretical effort [65, 66, 70–74] and numerical
simulations [75, 76], there is no clear consensus on the
nature of the melting transition and structure of the
phase diagram for the magnetic field aligned with the
direction of the layers.

6.1. Thermal Effects for the Dilute Josephson Vortex 
Lattice: the Intermediate Phase Problem

A standard first step to study thermal fluctuation
effects is to evaluate the mean�squared local fluctua�

tion displacement from elastic energy (59):
5
 

(89)

Introducing the reduced wave vector  as

(90)

5 As in most theoretical papers, the temperature is measured in
energy units.
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where kBZ =  is the average wave vector of
the Brillouin zone, we rewrite this integral in a more
explicit form

with β ~ 1. Evaluating this integral yields

(91)

where a0 =  and b0 =  are the typi�
cal lattice constant in the y and z directions. From this
result, we can obtain an estimate for the typical tem�
perature at which fluctuations become strong [65]:

(92)

Unfortunately, this temperature is located very close to
Tc, where we cannot use the approximations underly�
ing Eq. (59), e.g., neglect thermal activation of kinks
and antikinks. We can conclude that the model of pla�
nar fluctuations given by elastic energy (59) is not suf�
ficient to describe the melting of the Josephson vortex
lattice [65]. The temperature scale in (92) is much
higher than the corresponding temperature scale for
the pancake vortex lattice [19], meaning that thermal�
fluctuation effects for the Josephson vortex lattice are
much weaker than for the pancake vortex lattice.

We can estimate the typical temperature above
which kink formation strongly influences the fluctua�
tion displacements of the vortex lines. In an isolated
line, the typical distance between thermally excited
kinks is given by

(93)

where Ekink ≈ dε0ln(γd/ξab) is the kink energy. Usually,
it is assumed that the preexponential factor ξkink is of
the order of the in�plane coherence length ξab [72].
Analysis of fluctuations of the order parameter near
the core [77] gives a somewhat more accurate estimate

ξkink ~ ξab . Typical kx contributing to fluctua�
tion displacement (89) can be estimated as kx ~ π/b0.
Therefore, the kinks start to contribute to thermal
wandering if Lkink < b0. This gives an estimate for the
typical temperature

(94)

In the limit γ > ξab/d, we obtain

(95)
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region near Tc and very slowly decreases with increas�
ing the magnetic field.

The model of planar fluctuation belongs to the uni�
versality class of the three�dimensional XY model, and
hence the phase transition described by this model has
to be continuous. In spite of the insufficiency of this
model, this suggests that the melting transition for the
magnetic field applied along the layers may become
continuous for sufficiently high anisotropy. It was
indeed observed experimentally in [78] and in [30]
that the melting transition in YBCO becomes contin�
uous when the magnetic field is aligned with the layers.
Continuous melting of the Josephson vortex lattice
also has been observed in numerical simulations in
[75]. The simulation parameters in this work, however,
correspond to the regime of dense lattice, which is
considered below.

A description of the fluctuating Josephson vortices
taking kink–antikink formation into account is much
more complicated problem and possibilities for analytic
progress are quite limited. General scenarios of Joseph�
son�vortex�lattice melting have been discussed in [72]. It
was argued there that an aligned lattice may melt via an
intermediate smectic phase, in which the average vortex
density is modulated only in the direction perpendicular
to the layers but no order is preserved in the direction of
the layers, as illustrated in Fig. 17. The density modula�
tion period has to be equal to the integer number of lay�
ers. The developed Landau theory of the liquid�to�
smectic transition suggests that this transition has to be
of the second order. Static and dynamic properties of the
intermediate smectic phase have been described in
detail. In particular, it was argued in [75] that this phase
is characterized by a finite but very large tilt modulus,
corresponding to a very small transversal susceptibility
μz = Bz/Hz, and by very small in�plane resistivity. Both
these properties appear due to the thermally activated
“superkink” excitations, in which one vortex is moved
across the layers by one smectic period. While the den�
sity modulation remains static and oriented parallel to
the layers, these excitations may facilitate tilting of the
magnetic induction with respect to the layers and flux
motion in the z�axis direction. In spite of its physical
appeal, the theory in [72] is not quantitative. It does not
predict locations of the transitions in the field�tempera�
ture plane, their thermodynamic signatures, and the
width of the intermediate�phase region. The very exist�
ence of the intermediate smectic phase has been not rig�

orously proven. Alternatively, the crystal may melt
directly into the liquid via a first�order phase transition.

A more quantitative study based on the density�
functional theory was performed in [74]. The intrinsic
pinning potential in this study was modeled by the
cosine function and its strength was used as an adjust�
ing parameter. It was found that the smectic phase
exists for a sufficiently strong periodic potential only
for one type of aligned lattice, which in our notation
corresponds to (m, n) = (1, 0), and with one empty
layer between the layers filled with Josephson vortices,
i.e., with N = 2. According to the analysis in Sec. 4.2,
such a lattice is realized in the ground state within the
field interval [0.8 – 0.98]Φ0/(2πγd2). The melting sce�
nario via the intermediate smectic phase is most prob�
able in this field range.

6.2. Elimination of the Lattice Rotational
Degeneracy by Thermal Fluctuations

The dilute lattice at small fields is approximately
degenerate with respect to elliptic rotations, as was dis�
cussed in Sec. 4. This degeneracy is partially eliminated
by the intrinsic pinning potential and by the correc�
tions to the intervortex interactions due to the discrete�
ness of the layered structure. The latter effect becomes
noticeable only at high magnetic fields approaching the
crossover field. Because the Josephson vortices mainly
fluctuate along the layer direction, the fluctuation cor�
rection to the free energy depends on the lattice orien�
tation with respect to the layers and also eliminates the
elliptic degeneracy. Therefore, the Josephson vortex
lattice at small fields gives a physical realization of a
system in which the ground state is highly degenerate at
zero temperature and this degeneracy is eliminated by
thermal fluctuations. Similar behavior is realized in
some frustrated magnetics and is known as “order as an
effect of disorder” [79]. As a natural way to prepare the
ground state is to cool system in fixed field, it is impor�
tant to understand how the ground�state configuration
evolves with the temperature.

In this section, we consider the orientation–
dependent entropy correction to the free energy. This
allows us to trace evolution of the ground�state config�
urations with increasing field at finite temperature.
Qualitatively, fluctuations favor soft lattices, with
smaller elastic constants. We can then expect that the
entropy correction favors the aligned lattice (1, 0),
because for this lattice the shear deformations occur
along the closed�packed direction.

The orientation�dependent entropy correction is
determined by the short�wavelength lattice deforma�
tions, and the long�wavelength elastic approximation
in the previous section is not sufficient. The elastic
energy for planar deformations in the whole Brillouin
zone is given by

(96)Fel
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Fig. 17. Possible phases for the field applied along the layers.
Grey level illustrated the average vortex density. In the inter�
mediate smectic phase suggested in [72], density is modu�
lated only in the direction perpendicular to the layers.
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with

(97)

where Q = (Qy, Qz) are the reciprocal�lattice vectors.

The fluctuation correction to the free energy is
given by

(98)

Calculation of this correction is described in detail in
Appendix C. Combining the result of this calculation
with the London�limit presentation of the lattice
interaction energy (48), we represent the orientation�
dependent part of the total free energy at finite tem�
perature in the form

(99)

The numerically computed orientation–dependent
correction ga(θ, h) in the range 0.001 < h < 0.1 is well
described by

(100)

The fluctuations give the largest negative contribution
at θ = 0, meaning that they indeed favor the aligned
lattice (1, 0).

We compare the orientation–dependent entropy
correction with the correction due to the layered
structure considered in Sec. 4.2. We can see that these
corrections compete: the first one favors the (1, 0) ori�
entation while the second one favors the (1, 1) orien�
tation. The entropy correction decays with decreasing

fields as  and at small fields always exceeds the

“layeredness” correction, which decays as . We esti�
mate that the “layeredness” correction exceeds the
fluctuation correction when Bx exceeds the tempera�
ture�dependent field scale

with CT ≈ 2.6 × 104.
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6.3. Fluctuations and Melting of the Dense
Josephson Vortex Lattice

Using elastic energy (75), we can evaluate the
mean�squared fluctuation of the in�plane phase

with sz(kz) = sin(kzd/2) and the lattice displacement
un = –ΛJ(vn + 1 – vn)/h:

Renormalization of the effective coupling is deter�
mined by the average

All above integrals diverge logarithmically at large k||.
This divergence has to be cut off at k|| ~ 1/ξab. As usual
for quasi�two�dimensional systems, the weak inter�
layer coupling cuts off the logarithmic divergence at
small k||. Evaluating the integrals, we obtain

Fluctuations become strong and the harmonic
approximation breaks down when

 ~ 1, corresponding to  ~

1/6 and  ~ a2/3 with a = ΛJ/h being the in�plane
lattice constant. This gives the temperature scale

(101)

As E0(0) � Tc (typically, for BSCCO, E0(0) ~ 250–
300 K), this temperature scale usually corresponds to
temperatures close to Tc. It is somewhat lower than the
corresponding temperature scale (92) for the dilute lat�
tice and even smaller than temperature scale (95) for
kink formation in the dilute lattice. We next discuss the
melting transition of the dense lattice based on the
energy (72) describing weakly coupled two�dimen�
sional systems. Behavior of such a system has to be sim�
ilar to that of the layered XY model [80] and a layered
superconductor in zero magnetic field [81]. In the
ordered phase of such systems, below the Berezinskii–
Kosterlitz–Thouless temperature for a single layer, a
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weak interlayer coupling is always relevant, cannot be
treated as a small perturbation, and restores three�
dimensional long�range order. The transition in such
systems is expected to be continuous and to occur
slightly above the Berezinskii–Kosterlitz–Thouless
transition of an isolated layer that occurs at the temper�
ature TKT = πE0(TKT)/2. This is in spite of the fact that
the interplane fluctuations actually become strong at
the temperature (101), which is significantly smaller
than the transition temperature TKT in an isolated layer.

The melting transition of the dense lattice was
studied numerically in [75] using the frustrated XY
model. The authors claimed that the melting transi�
tion is continuous at high field and changes to a first�
order transitions when the field drops below B =

Φ0/2 γd2 ≈ 1.8Φ0/2πγd2. It is not clear how univer�
sal this field is. In principle, it may be sensitive to the
kink energy, which depends on the ratio γd/ξab.

Experimentally, an indication of the melting transi�
tion in the dense�lattice regime was found in small�size
BSCCO mesas in [46], where the temperature depen�
dence of magnetic oscillations discussed in Sec. 5.4 was
explored. It was found that in the field range 0.6–0.8
tesla, the magnetic oscillations of the flux�flow voltage
rapidly decrease with increasing temperature and are
completely suppressed by thermal fluctuations at tem�
peratures ~ 4 K below the transition temperature.

7. SUMMARY

In this review, we considered in detail the static
properties of the Josephson vortex lattice following
from the Lawrence–Doniach model in the London
approximation, which mostly describes properties of
superconductors in terms of the distribution of the
order–parameter phase. We reviewed the properties of
an isolated vortex as well as the structure and energet�
ics of the vortex lattice in both dilute and dense
regimes. In addition to standard properties, our con�
sideration includes quite subtle nontrivial effects, such
as the influence of thermal fluctuations on the orien�
tation of the vortex lattice. We did not touch on
dynamic properties of the lattice, which have became
a separate large field.
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APPENDIX A

Calculation of the Nonlocal Line�Tension Energy
of a Single Line

For deformations with wave vectors  � 1/λc,
screening effects can be neglected and the energy vari�
ation is determined by the phase part of energy, which
we write using scaled in�plane coordinates ( , ) =
(x/γd, y/γd) as

(A.1)

where ( ) is the straight�vortex solution. The
phase of the deformed vortex obeys the equation

(A.2)

with the condition φ1( , ( )) – φ0( , ( )) = π
defining the vortex core and ( ) = u(x)/γd. In the
elastic limit  � 1, at distances smaller than the
typical wavelength of deformation, the phase can be
approximately represented as

On the other hand, at large distances, we can use the
London approximation in Eq. (A.2) and find the phase
using the Fourier transformation. This gives the phase

perturbation φ(1)( ) = φ( ) – φ(0)( ) in the form

(A.3)

where ( , , ) = (γdkx, γdky, dkz) and  =  +

+ . We use this result in a mixed ( , , )�repre�
sentation, which is obtained by the inverse Fourier trans�
form of the above equations with respect to  and ,

(A.4)

with  = ( , ).
We split the total energy loss given by Eq. (A.1) into

the x�gradient and transverse parts, δF = Fx + Fzy. The
x�gradient part,

can be computed by introducing an intermediate scale

1 � R � 1/  that splits the integral into the two contri�
butions, from small and large distances. The contribu�

tion from  =  < R with  = n – 1/2 is given by
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where yn = . The quantity

is determined by the exact phase distribution in the
core. Using the accurate numerical solution, we esti�
mate Cy ≈ 0.93. The contribution from the region r > R
is computed using Eq. (A.4),

Computing the integral

where γE ≈ 0.5772 is the Euler constant, we obtain

Combining the parts Fx, < and Fx, >, we obtain

(A.5)

In the transverse part

we replace ( , ) with (  – ( ), ) and

represent φn( , ) as φn( , ) = (  – ( )) +

( , ), where the Fourier transform of ( , ) at
small wave vectors is given by
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We see in what follows that the main contribution to
Fxy comes from the distances of the order of a typical
wavelength of deformations far away from the core.

Therefore, we can expand with respect to  and can
use the linear and continuous approximation

Substituting ( ) and computing the integral with

respect to  and , which converges at ,  ~ ,
we obtain

(A.6)

Finally, combining (A.5) and (A.6), we obtain the
line–tension energy of the Josephson vortex in (31),
presented already in the real coordinates with the
numerical constant Ct = 2exp(–γE + Cy).

APPENDIX B

Discrete and Nonlinear Corrections to the Josephson 
Vortex Phase and Energy at Large Distances

from the Core

The phase distribution φn(y) in the Josephson vor�
tex core obeys Eq. (20). We measure the in�plane
coordinate y in units of the Josephson length ΛJ = γd
defining the dimensionless coordinate  = y/γd and
rewrite (20) in the form

At large distances from the core, n2 +  � 1, this
equation transforms into the isotropic London equa�
tion ∇2φ = 0. In this region, φn( ) can be approxi�
mated by a continuous function φ( , ) with n  .
Using the Taylor series for the difference φ( ,  + 1) –
φ( , ), we obtain

Therefore, the phase equation to 4th order in the gra�
dient (which is small at large distances) is given by

(B.1)

This equation can be solved iteratively. For the Joseph�
son vortex located at  = 0 in between the layers 0
and 1, the zeroth�order solution φ0 (correct to the
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second order in the gradients) is given by φ0( , ) =
⎯arctan[(  – 1/2)/ ] (we note that for  = n, we have

φ0(y/γd, n) = (y) in (21)). The first�order correc�

tion δφ1( , ) obeys the equation

where  =  + (  – 1/2)2. Using the solutions of the
inhomogeneous Laplace equations

,

we build the solution for δφ1( , φ0) and arrive at the
correction

(B.2)

Here, we have added the solution sin(2φ0)/  of the
homogeneous Laplace equation with an unknown
numerical constant Cδφ. Comparison of these asymp�
totic expressions with the full numerical solution gives
Cδφ ≈ 4.362. The result in (B.2) is given in unscaled
coordinates in (28).

In a similar way, we can derive a nonlinear/discrete
correction to the energy far away from the core. The
reduced energy contribution to the Josephson vortex
from the region  < λab/d is given by

In the region  � 1, we can again use the expansion
with respect to a small gradient along the z axis, which
leads to the result

In the lowest order with respect to small gradients,
this gives the correction to the energy due to the lay�
ered structure
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(B.3)

In the case of a single Josephson vortex, this formula is
not very useful because the integral is formally divergent
at small distances and is determined by the small�dis�
tance cut�off. In the case of a finite vortex density, how�
ever, a generalization of this equation allows obtaining a
nontrivial correction to the vortex�lattice energy.

In the vortex�lattice case at a finite in�plane field,
following the same reasoning, we obtain the correc�
tion to the reduced energy per unit cell in (56):

(B.4)

where integration is performed over the unit cell and
φ0( ) is the vortex�lattice phase within the London
approximation. To estimate the dominating contribu�
tion, we use the circular�cell approximation for the
lattice phase. In this approximation, supercurrents

flow radially within the cell  < ac =  and vanish
at its boundary, and hence the gauge�invariant phase
gradient is given by

where α = arctan( / ) is the polar angle, whence

∂φ0/∂  + h   –cos(α)(1/r – r/ ). The integral
formally diverges at small distances. This divergence,
however, is due to the vortex�core energy. To find the
nontrivial correction to the lattice energy, we subtract
the diverging single�vortex term. The dominating con�
tribution to the rest part comes from the second (non�
linear) term

(B.5)

and calculation gives the result

(B.6)

From the fit of the numerically computed energy to this
formula, we obtain the numerical constant Ch ≈ 110. We
note that this correction does not depend on the lattice
orientation with respect to the layers. Interaction with
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the layers also eliminates the “elliptic” rotation degen�
eracy of the lattice described in Sec. 4. Expansion (B.5),
however, is not sufficient to find the orientation�depen�
dent correction to the energy. To obtain that correction,
one has to obtain the next�order expansion with respect
to the gradients (sixth�order terms).

APPENDIX C

Calculation of the Orientation�Dependent
Fluctuation Correction to the Free Energy

In this appendix, we present the calculation of the
entropy correction to free energy (98) based on the
planar elastic energy (96). To facilitate calculations,

we again introduce the reduced wave vectors  defined
in Eq. (90) and the corresponding reciprocal�lattice

vectors  = ( , ). In this presentation, the recip�
rocal lattice becomes a regular triangular lattice with

the unit vector Q0 =  and the area of the Bra�
vais cell is equal to π. Using the new variables, we rep�
resent ΦJVL(k) in the compact reduced form as

(C.1)

(C.2)

where bx = 4πλabλcBx/Φ0 = 2(λab/d)2h � 1 and  =

(0, , ).
We assume that the lattice is rotated at a finite angle

θ with respect to the layers selected in such a way that

the layers are aligned with one of the crystallographic
directions, as sketched in Fig. 18. This means that the
lattice, in general, has the form of a misaligned lattice
sketched in Fig. 6a and is characterized by the aspect
ratio r = γb/a and the shift parameter, q. To compute
the sum over the reciprocal–lattice vectors, we use two
equivalent parameterizations illustrated in Fig. 18.
The first parameterization uses an expansion over the

two basic vector of the tilted lattice,  = nG1 + mG2

with m, n = 0, ±1, ±2, …. For such an expansion, we

can simply represent the component of  along the
two main directions of the tilted lattice, (k1, k2), shown
in Fig. 18,

(C.3)

This gives  = (n2 + nm + m2) . The (y, z) compo�
nents of the wave vectors are related to the (1, 2) com�
ponents by axis rotation. For example, for the compo�

nent  in Eq. (C.2), we have  = cosθ  + sinθ .
This parameterization allows us to naturally trace the
dependence on the rotation angle θ. The second
parameterization utilizes the basic wave vectors
aligned with the layers,

(C.4)

This basis allows easily tracing the dependence on the
lattice�structure parameters r and q. It also allows

reducing φJVL( ) to a simpler form. Substituting pre�
sentation (C.4) in Eq. (C.2) and taking the sum over n,
we obtain

 

with κ(ky, kx) ≡ . This formula contains
only one summation, which makes it convenient for
numerical evaluations. On the other hand, the depen�
dence on the rotation angle here is not obvious and is
hidden in the dependence on the parameters r and q.

The sums over the reciprocal�lattice vectors in
Eqs. (97) and (C.2) formally diverge logarithmically at

large Q( ). Correspondingly, the sum over m in the

previous equation also logarithmically diverges. This
divergence is due to the single�vortex tilt energy and
has to be cut at the core size, Qy ~ 1/γd. This energy
was considered in details in Sec. 3.1. We split the

reduced elastic matrix φJVL( ) into the single�vortex,

φsv( ), and interaction, φi( ), terms,
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The single�vortex term φi( ) can be obtained from Eq.

(C.2) by replacing the summation over  with inte�

k̃

Q̃

gration,

Using Eq. (31), we obtain the line�tension term in real

units, Φsv(kx) = π(Bx/Φ0)εJ ln(Ct/γdkx) with εJ ≡
E0/γd and Ct ≈ 2.86. This corresponds to the following

result for the reduced line�tension term φsv( ) =

(4π / )Φsv(kx):

(C.5)

for  � 4/h. In the interaction term φi( ) = φJVL( )

– φsv( ), the logarithmic divergence is compensated

and the sum over  converges roughly at  ~ 1. In
particular, using the presentation in (C.5), the interac�
tion term can be represented as a converging sum.
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with

Here, the terms with U[…, …] originate from the sin�

gle–vortex contribution φsv( ), which is properly
decomposed to compensate the summation diver�
gence. In spite of its scary look, this formula is the
most suitable one for numerical calculations.

From Eq. (98), we obtain the entropy correction to
the free energy in reduced form

(C.6)
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2
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∫

where  denotes the integral over the Brillouin

zone and  is a dimensionless constant. The integral
over kx is formally diverging. This divergence is due to
short�wavelength excitations in the vortex cores and
does not contribute to the angular�dependent correc�
tion. To separate the regular anisotropic correction, we
subtract the isotropic single�vortex contribution from
the total free energy and represent the resulting aniso�
tropic correction as

(C.7)

with

(C.8)

This presentation is used in Eq. (99).

…
BZ∫

C̃

δfT a, θ( ) T

πγ
��������

Bx

Φ0

�����⎝ ⎠
⎛ ⎞

3/2

ga–=

ga
d

2k̃yz

π
��������� kx

φsv k̃x( )

φsv k̃x( ) φi k̃( )+
�����������������������������.lnd

0

∞

∫
BZ

∫=

(a)
(b)

a0

a
b θ

L1

G1 G2

L2

k2

k1 ky

kz

n
Q0

Fig. 18. (a) Josephson vortex lattice in reduced coordinates
rotated at a finite angle θ with respect to the layers in real
space such that the layers align with the crystallographic
direction (3, 1). (b) The corresponding reciprocal lattice
and illustration of two selections for the basis used in the
calculation of the entropy correction: the basic wave vec�
tors G1, 2 aligned with the lattice, and the basic wave vec�
tors L1, 2 aligned with the layers.
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The large logarithmic factor in φsv( ) in Eq. (C.5)
allows obtaining a useful approximate formula for ga.

As φi( ) ~ 1, the integral over  converges at  ~

1/  � 1, meaning that for a log�accuracy

estimate, we can neglect the kx�dependence of φi( ).
Evaluating the integral over kx, we obtain

(C.9)

with A ~ 1. If we neglect the small parameter  in

φi( ), then the integral in this formula becomes field
independent and the only field dependence of ga for
h  0 is given by the factor [ln(A/h)]–1/2.

We numerically computed the reduced entropy
correction ga for different lattice orientations and
reduced fields h. An example of the angular depen�
dence of ga for h = 0.0067 is shown in the inset of
Fig. 19. We found that in the range 0.001 < h < 0.1, the
orientation–dependent part of ga can be well fitted by
formula (100). The dependence g6(h) is plotted in
Fig. 19. The positive sign of g6(h) means that the fluc�
tuations give the largest negative contribution at θ = 0,
i.e., they indeed favor the aligned lattice (1, 0). We also

k̃x

k̃ k̃x k̃x

1/h( )ln

k̃

ga
2

A/h( )ln
�������������������� d

2k̃yz φi k̃yz( )

BZ

∫–≈

bx
1–

k̃yz

can see that the effect occurs to be quantitatively
rather small, at least in the considered Gaussian�fluc�
tuation regime.
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