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JOSEPHSON VORTEX LATTICEIN LAYERED SUPERCONDUCTORSA. E. Koshelev a*, M. J. W. Dodgson baMaterials Siene Division, Argonne National Laboratory60439, Argonne, IllinoisbTheory of Condensed Matter Group, Cavendish Laboratory, Cambridge, CB3 0HE, UKInstitut de Physique, Université de Neuhâtel2000, Neuhâtel, Switzerland,Department of Physis and Astronomy, University College London,London WC1E 6BT, UKReeived April 1, 2013Dediated to the memory of Professor Anatoly LarkinMany superonduting materials are omposed of weakly oupled onduting layers. Suh a layered struturehas a very strong in�uene on the properties of vortex matter in a magneti �eld. This review fouses on theproperties of the Josephson vortex lattie generated by the magneti �eld applied in the diretion of the layers.The theoretial desription is based on the Lawrene�Doniah model in the London limit, whih takes only thephase degree of freedom of the superonduting order parameter into aount. In spite of its simpliity, thismodel leads to an amazingly rih set of phenomena. We review in detail the struture of an isolated vortexline and various properties of the vortex lattie, in both dilute and dense limits. In partiular, we extensivelydisuss the in�uene of the layered struture and thermal �utuations on the seletion of lattie on�gurationsat di�erent magneti �elds.DOI: 10.7868/S00444510130900711. INTRODUCTIONLayered superondutors are materials made froma stak of alternating thin superonduting layers sep-arated by nonsuperonduting regions. The superon-duting layers are essentially two-dimensional (2D) aslong as they are so thin that there is no variationin �elds, or in the superonduting order parameter,aross eah layer. Suh strutures frequently our nat-urally in anisotropi rystals. A layered superondu-tor an arry superurrents along the layers, as well asbetween the layers. This is due to the Josephson tun-neling of Cooper pairs [1℄ aross the insulating regionsthat separate neighboring superonduting layers, i. e.,eah pair of neighboring layers forms one Josephsonjuntion. In general, the z-axis (Josephson) superur-rents are weaker than the superurrents along the lay-*E-mail: koshelev�anl.gov

ers. A mere �layeredness� of atomi struture, however,does not automatially make a material a layered su-perondutor. When the interlayer eletrial ouplingis su�iently strong, this disrete system of layers ap-proximates to a ontinuous superondutor with uni-axial anisotropy. Hene, we are interested in the asewhere the approximation to a uniaxial ontinuous su-perondutor breaks down, whih happens when thelayer separation d is greater than the z-axis superon-duting oherene length, d� �.The most prominent example is the high-T upratesuperondutors, disovered in 1986 [2�5℄, whih led toa huge interest in physis of layered superondutors.The two most studied uprate ompounds, YBa2Cu3O7(YBCO) and Bi2Sr2CaCu2Ox (BSCCO), have simi-lar transition temperatures T � 90K and representtwo important partiular ases. YBCO is moderatelyanisotropi, with the anisotropy fator  � 5�7, andits �layeredness� beomes essential at low temperatureswhen the -axis oherene length � drops below the519
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azFig. 1. Illustration of a dilute lattie of Josephson vorties generated in a layered superondutor by a magneti �eld appliedalong the layer diretionlayer spaing d. On the other hand, BSCCO has ahuge anisotropy fator,  � 400 � 1000, and behavesas a layered superondutor pratially in the wholetemperature range below T. Other naturally layeredsuperondutors inlude the transition metal dihalo-genides [6; 7℄ and organi harge-transfer salts formedwith the moleule BEDT-TTF [8; 9℄. An importantnew family of atomially layered superonduting ma-terials, iron pnitides and halogenides, was disoveredin 2008 [10℄ and is being extensively explored sine then(see, e. g., reviews [11�13℄). Anisotropy of most om-pounds is atually not very high and they typially be-have as anisotropi three-dimensional materials. Thereare important exeptions, however. The most studiedompound in whih the layered struture is learly es-sential is SmFeAsO1�xFx [14℄ with T up to 55 K. Forexample, the Josephson nature of the in-plane vortiesat low temperatures has been reently demonstrated inthis ompound [15℄. Also, several iron pnitide om-pounds with extremely high anisotropy have been dis-overed [16�18℄. Properties of these ompounds re-main mostly unexplored due to their rather ompli-ated omposition.All layered superondutors share a very similargeneral behavior of the vortex matter generated by anexternal magneti �eld, whih is insensitive to the mi-rosopi nature of superondutivity inside the layers.Several exellent review artiles have been published inthe past overing di�erent aspets of the vortex mat-ter in type-II superondutors [19�23℄. Nevertheless,we feel that further progress in the understanding ofthe Josephson vorties in layered superondutors war-

rants a speialized review, providing more details anddisussing important reent results.This short review narrowly fouses on the vortexlattie that appears at magneti �elds applied alongthe layers. In this ase, the �ux line winds its phasearound an area between two neighboring layers and isalled a Josephson vortex in analogy with a vortex ina superonduting tunneling juntion. The Josephsonvortex ontains out-of-plane urrents that tunnel viathe Josephson e�et from layer to layer. The urrentdistribution around a vortex is anisotropi. As a on-sequene, the vortex lattie is also anisotropi: it isa triangular lattie strongly strethed along the lay-ers (see Fig. 1). In addition, the restrition to lie be-tween the layers leads to ommensurability e�ets andan energy barrier to tilting the �eld away from thelayers. There are two very di�erent regimes depend-ing on the magneti �eld strength Bx. The rossover�eld sale Br separating these two regimes is set bythe anisotropy fator  and the layer periodiity d asBr = �0=(2�d2), where �0 = h=2e is the �ux quan-tum. In the ase of BSCCO, this �eld sale is around0.5 tesla. In the dilute lattie regime, Bx < Br, thenonlinear ores of Josephson vorties are well separatedand the distribution of urrents and �elds is very sim-ilar to that in ontinuous anisotropi superondutors[24℄. The dense lattie regime is realized at high �eldsBx > Br, where the ores of Josephson vorties over-lap. In this regime, the Josephson vorties �ll all lay-ers homogeneously [25℄. This state is haraterized byrapid osillations of the Josephson urrent and by veryweak modulation of the in-plane urrent. In this re-520



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorsview, we haraterize these two lattie regimes in moredetail.We do not onsider the properties of vorties gen-erated by a magneti �eld applied perpendiular to thelayers, along the  axis1). The struture of a -axis vor-tex is very di�erent from the struture of an in-planevortex. In layered superondutors, a -axis vortex anbe viewed as a stak of weakly oupled pointlike pan-ake vorties. Properties of the panake vortex lattiewere also extensively explored, see, e. g., reviews [23℄and [26℄ and the referenes therein.Several experimental tehniques have been em-ployed to explore the Josephson vortex latties. Thedilute strethed lattie at small �elds (< 100 G) hasbeen diretly observed in YBCO with Bitter deora-tion in [27℄, where the elliptial distribution of the �uxaround eah Josephson vortex was also seen. At high�elds (> 1 tesla), the ommensurability between the-axis parameter of the Josephson vortex lattie andthe interlayer separation leads to magneti �eld osilla-tions, whih have been observed experimentally in un-derdoped YBCO in irreversible magnetization [28; 29℄and nonlinear resistivity [30℄.In muh more anisotropi BSCCO, diret observa-tion of Josephson vorties is not possible. However,when the magneti �eld is tilted at small angles withrespet to the layers, the -axis �eld omponent gen-erates the panake-vortex staks that preferably enterthe superondutor along the Josephson vorties form-ing hains. Visualizing the �ux of these hains, it ispossible to �nd loations of vertial rows of the Joseph-son vorties and measure the in-plane lattie parame-ter ay. This was done using a variety of visualizationtehniques, suh as Bitter deorations [31; 32℄, sanningHall probes [33℄, Lorentz mirosopy [34; 35℄ and mag-netooptial imaging [36; 37℄. These observations havebeen summarized in review [38℄.Most extensively, properties of the Josephson vor-tex lattie were explored in BSCCO using -axis trans-port in small-size mesas [39�43℄. These studies revealeda very rih dynamial behavior of the lattie, whihis beyond the sope of this review. The very impor-tant feature is that, due to low dissipation, the Joseph-son vortex lattie an be aelerated up to very highveloities. It is lear that understanding dynamis isnot possible without good understanding of stati lat-tie properties. The dynami phenomenon losely re-lated to stati lattie on�gurations is magneti-�eldosillations of resistane for very slow lattie motion,1) In the literature the layer plane and the axis perpendiularto the layers are frequently alled �ab plane� and � axis�.

whih have been disovered and explored in small-sizeBSCCO mesas [44�48℄. The osillation period an or-respond to either the �ux quantum or half the �uxquantum per juntion depending on the magneti �eldand the lateral size of the mesa. An interplay betweenthe bulk shearing interation and the interation withedges leads to very nontrivial evolution of lattie stru-tures, whih we onsider in this review.This review is organized as follows. We start inSe. 2, where we present the energy funtional and equi-librium equations for the phase and vetor potential.In Se. 3, we desribe the struture and energetis ofa single �ux line. In Se. 4, we disuss the dilute JVLand onsider in detail the role of layered struture inseleting lattie on�gurations. The properties of thedense JVL at high �elds are onsidered in Se. 5. Inthis regime, the struture and energy of the lattie anbe evaluated analytially using an expansion with re-spet to the Josephson oupling. In that setion, wealso review the magneti �eld dependene of lattieon�gurations and osillations of the ritial urrentin �nite-size samples. Elasti properties of both diluteand dense latties are disussed in the orrespondingsetions. In Se. 6, based on the elasti energies, wereview e�ets aused by thermal �utuations.2. ENERGY FUNCTIONAL AND EQUATIONSFOR THE SUPERCONDUCTING PHASESAND VECTOR POTENTIALTheoretial analysis of the Josephson vortex matterin layered superondutors is based on a phenomeno-logial model in whih only the phase degree of freedomof the superonduting order parameters is taken intoaount and its amplitude variations are negleted,FLLD ��n(rk);A(r)� = Z d3rB28� ++Xn Z d2rk(E02 �rk�n + 2��0Ak;n�2 ++ EJd2 [1� os(�n+1 � �n + �n;n+1)℄� ; (1)where E0 = �20d=(16�3�2ab) de�nes the in-plane phasesti�ness and EJ = E0=2 = �20d=(16�3�2) is the phasesti�ness for smooth inter-layer phase variations, �aband � are the omponents of the London penetrationdepth, and  = �=�ab is the anisotropy fator. Thez omponent of the vetor potential enters the tunnel-521



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013ing term in the form2) �n;n+1 = (2e=~) R (n+1)dnd dz Az .Near the transition temperature, the above phasemodel an be obtained from the elebrated Lawrene�Doniah model [49℄ by �xing the order-parameter am-plitude (London approximation). However, the modelis atually more general and desribes Josephson prop-erties of a layered material in the whole temperaturerange. Starting from the phase model, a rih variety oflattie properties an be derived, whih we review inthis artile.Subjet to some given boundary onditions, theon�guration of f�n;Ag is determined by minimiz-ing the free energy. This leads to a set of di�erentialequations; for example, minimizing with respet to thephase gives the urrent-onservation onditionr 2k �n + 2��0rk �Ak;n == 1(d)2 (sin'n�1;n � sin'n;n+1) ; (2)with the gauge-invariant phase di�erene de�ned as'n;n+1 = �n+1 � �n + �n;n+1. In this equation, theJosephson length �J = d appears for the �rst time.This length plays a very important role in layeredsuperondutors beause it determines the sale overwhih the phase an relax to minimize the Josephsonoupling energy without osting too muh energy in thegradient term. Three more equations result from min-imizing with respet to the three omponents of thevetor potential. We an write these in terms of theeletri urrent density by using the Maxwell equationj = (=4�)r� (r�A), whih givesJk;n = �2�E0�0 �rk�n + 2��0Ak;n� ; (3)Jn;n+1 = �jJ sin'n;n+1; (4)where Jk;n is the 2D urrent density in the nth layerand Jn;n+1 is the urrent density in the ẑ diretionbetween the nth and (n + 1)th layers, whih has themaximum value jJ = 2�E0�0(d)2 : (5)The four equations (2)�(4) are the starting point for�nding the struture of vorties in layered superondu-tors. In fat, we an make the job of solving this setof equations slightly learer by ombining them into a2) Here e is hosen to be positive, e > 0, i. e., the harge of aneletron is �e.

di�erential equation for the gauge-invariant phase dif-ferenes alone. This is done by using the general result4�d Jn;n+1 = (n+1)dZnd dz [r� (r�A)℄z == rk � (Ak;n+1 �Ak;n)� �02�r2k�n;n+1; (6)and ombining this with (2) and (4) to arrive atr2k'n;n+1 + 1�2 sin'n;n+1 + 1(d)2 �� [sin'n+1;n+2 � 2 sin'n;n+1 + sin'n�1;n℄ = 0: (7)Solving this equation then gives the entire solution forurrents by using (4) to �nd Jn;n+1, and the onserva-tion law rk � Jk;n = Jn;n+1 � Jn�1;n (8)to �nd Jk;n.3. STRUCTURE OF A JOSEPHSON VORTEXIN A LAYERED SUPERCONDUCTORIf we plae a �ux line direted along the layers,the singularity assoiated with the vortex ore an beavoided by plaing the enter in the insulating layerbetween two superonduting layers (�rst notied byBulaevskii [50℄). The struture of the �ore� is similarto the struture of the phase drop aross a �ux line ina two-dimensional Josephson juntion [51℄. This well-studied problem has a solution where the phase di�er-ene aross the two layers drops by 2� over a distaneof the Josephson length �J3). For the 3D layered su-perondutor, this length is given by �J = d, andwe an think of a entral region d wide and d highas the ore of an in-plane vortex. Beyond this ore,the �ux density and urrents are quite similar to thosefor a ontinuous anisotropi superondutor [24℄. Thesreening by z-axis urrents is muh weaker than thatby in-plane urrents, and the �ux line is strethed intoan ellipsoidal shape with a large width � � along thelayers. Even though only the �ore� resembles the vor-tex in a 2D Josephson juntion, it has beome ommonin the literature to label the entire �ux line with thisorientation a Josephson vortex.We now onsider now a �ux line direted along thex axis. The general struture of this Josephson vor-tex was �rst desribed by Bulaevskii [50℄. The enter3) This harateristi length was noted soon after the disoveryof the Josephson e�et [82℄.522



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorsof the vortex lies between two layers, suh that thereis no ore with suppressed amplitude of the order pa-rameter, while the struture at large distanes from theenter is similar to a onventional �ux line. The phasearound the vortex is not given trivially by symmetry,but is a solution of nonlinear equations (2). The mostonvenient path to a quantitative solution is to separatethe problem into two di�erent sales: At large sales,we an ignore the nonlinearity, and there is an ana-lyti solution. At small sales, the numerial solution issimpli�ed by ignoring the sreening ontribution of thevetor potential. Fortunately, for �ab=d� 1, there is alarge region of intermediate sales where both approxi-mations work well, allowing us to math the small-saleand long-sale solutions.We onsider a vortex entered between layers 0 and1, and y = 0, whih is de�ned by the limiting values�n(y) = 0; for y ! +1;�n(y) = ( ��; n � 1;�; n � 0; for y ! �1: (9)This orresponds to the following onditions for the in-terlayer phase di�erene:'n;n+1 = 0; for y ! �1 and n 6= 0;'0;1 = ( 0; y ! +1;�2�; y ! �1: (10)To obtain the urrent and �eld distributions, we�rst derive a useful exat equation for the magneti�eld. The urrent omponents in (3) and (4) an berepresented asJn;n+1 = � 4�ryBn;n+1x == � �08�2�2d sin'n;n+1; (11)Jy;n = 4�rnBn�1;nx == �0d8�2�2ab�ry�n + 2��0Ay� ; (12)where Bn;n+1x is the average magneti �eld betweenthe layers n and n + 1 and rn is a di�erene opera-tor rnAn � An+1 � An. Colleting the ombination(4�=) ���2ryJn;n+1 + (�2ab=d)rnJy;n�, we obtain�1� �2r2y � (�2ab=d2)r2n�Bn;n+1x == �02�dry ('n+1;n � sin'n+1;n) (13)

with r2nAn � An+1 + An�1 � 2An. The di�erene of'n+1;n and sin'n+1;n deays outside the nonlinear oreand satis�es the relationXn 1Z�1 dyry ('n+1;n � sin'n+1;n) ==Xn 'n+1;n���1�1 = 2�: (14)In the ontinuum limit, the right-hand side of (13)therefore onverts into �0Æ(y)Æ(z) and (13) transformsinto the usual equation for the vortex magneti �eld [52℄Bx � �2r2yBx � �2abr2zBx = �0Æ(y)Æ(z); (15)whih givesBx = �02���abK00�s� y��2 +� z�ab�21A : (16)The urrent densities outside the ore region are alsogiven by standard formulas for anisotropi superon-dutorsjy = � �08�2��2ab z=�abpy2=�2 + z2=�2ab ��K1 sy2�2 + z2�2ab !; (17)jz = �08�2�2�ab y=�py2=�2 + z2=�2ab ��K1 sy2�2 + z2�2ab !: (18)These results should be valid as long as the linear ap-proximation for the sine of the phase di�erene is good.To �nd the range of appliability for this approxima-tion, we ompare the last equation to (4), whih nearthe vortex enter, givessin'n;n+1 = � y=d(y=d)2 + n2 fory2=�2 + z2=�2ab � 1; (19)indiating that the linear theory breaks down at(y=d)2 + n2 � 1. This ondition therefore sets theboundary of the nonlinear ore.The above analysis shows that the Josephson vor-tex is haraterized by two sets of length sales. A523



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013region where the interlayer phase di�erene is large de-�nes the nonlinear ore of the vortex. In the z di-retion, this region is essentially loalized within theentral juntion and in the y diretion, it spreads overthe Josephson length d. At sales jzj ; jyj = � d, thevortex struture is desribed by the anisotropi Lon-don theory. In addition, we an neglet sreening ef-fets in a wide region where the urrents around thevortex deay as 1=r (although the urrent pattern isstrongly strethed along the layers). Sreening of theurrents and magneti �eld beomes important at thelength sales jzj � �ab and jyj � �, whih are muhlarger than the orresponding boundaries of the non-linear ore.Due to this vortex struture, a quantitative analy-sis an be obtained with more ease by introduing anintermediate sale Rint, with d < Rint < �ab, suhthat at the distane pz2 + (y=)2 = Rint from thevortex enter, both nonlinearity and sreening may beignored. We then onsider the small-distane regionpz2 + (y=)2 < Rint (ontaining the nonlinear ore)and the large-distane region pz2 + (y=)2 > Rint(where sreening will beome important) separately.At small distanes, we an neglet sreening. In theLondon gauge r � A = 0, this means that the vetorpotential A an be dropped and the vortex is desribedin terms of in- plane phases �n(y) only, whih satisfythe equation (from (2))(d)2 d2�ndy2 + sin (�n+1 � �n)�� sin (�n � �n�1) = 0 (20)and boundary onditions (9). These onditions are sat-is�ed by our knowledge that outside the nonlinear ore,where (n� 1=2)2 + (y=d)2 � 1, the phase has to ap-proah the saled version of the usual form relating tothe angle around a vortex,�Jvn (y) = � artg�d(n� 1=2)y � : (21)Multiplying (20) by d�n=dy, summing over n, and per-forming an inde�nite integral over y, we derive the fol-lowing exat relation for all y:Xn "(d)2 �d�ndy �2�2 (1� os (�n+1��n))# == onst; (22)whih is analogous to the �rst integral of a seond-orderdi�erential equation with one variable. For an isolated
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Fig. 2. Visualization of the numerially omputedstruture of an isolated Josephson vortex. The arrowsrepresent the urrent distribution (half the interlayerdistane orresponds to maximum Josephson urrent).The greylevel odes for the osine of the interlayerphase di�erene. The sale in the y-diretion is in unitsof the Josephson length �J = dJosephson vortex, the onstant is zero. In ontrast tothe single-variable ase, this relation does not help us to�nd the exat solution of oupled nonlinear equations(20), and we have either to use some approximate so-lution or to solve it numerially. Relation (22) an,however, be used to test the auray of the approxi-mate and numerial solutions.A simple approximate solution has been proposedby Clem and Co�ey [52℄ (the CC solution), who usedthe ansatzBx � �02���abK0 py2 + 2z2 + y2� ! (23)for the magneti �eld and found that the best approx-imation for the ore struture is ahieved by seletingthe ut o� y = d=2. This �eld distribution allowsobtaining the distribution of the phase di�erene'n;n+1 � � sin�1� d�ab yRn(y)K1�Rn(y)� �� ; (24)where Rn(y) = py2 + (dn)2 + y2. In partiular,at d � y � �, this orresponds to �1(y) �� � tg�1(d=2y).The aurate numerial struture for the ore wasobtained in Ref. [52℄. Figure 2 presents a visualizationof this numerial solution, and we ompare the phasedi�erene in the entral juntion to that from the CCsolution in Fig. 3. The numerial solution is hara-terized by the following properties. The maximum in-plane phase gradient is given byd d�1dy ����y=0 = 1:10 (25)524
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Fig. 3. Sine of the phase di�erene between the en-tral layers of the Josephson vortex. For omparison,the approximate solution of Clem and Co�ey [52℄ isalso shown(the CC solution gives d (d�1=dy)y=0 = 2) andthe maximum Josephson urrent �ows at the distaneymax = 0:84d from the vortex enter (the CC solutiongives ymax = y = 0:5d). The maximum magneti�eld in the vortex ore is given byB0;1x (y = 0) � �02���ab �ln��abd �+ 1:03� : (26)The asymptoti limits for the phase di�erene in theentral juntion are'0;1 =8>>>>>>>>><>>>>>>>>>:
�� + 2:20yd ; jyj � d;�dy ; d� y � �;� d�abs��2y e�y=� ; � � y: (27)Outside the ore, we an alulate the orretionÆ�n(y) to the ontinuum-limit phase asymptotis (21)by treating the disreteness and nonlinearity of theJosephson urrent perturbatively (see Appendix B).This givesÆ�n(y) = sin[2�Jvn (y)℄16R2 (lnR+ CÆ�) ++ 5 sin[4�Jvn (y)℄96R2 ; (28)where R = p(n� 1=2)2 + (y=d)2, and the onstantCÆ� � 4:362 is found from omparison with the numer-ial solution.We an �nd the energy per unit length of theJosephson vortex by inserting this solution into (1).

The simplest method [53℄ is again to split the energyinto two ontributions: one from the region at largedistanes where the linear approximation is valid, andone from small distanes where we need the numeri-al solution, but an ignore the ontributions of A tothe urrent (i. e., ignore sreening). The �rst is foundanalytially, while the seond needs a numerial inte-gration. The �nal result is (see also [54℄),"Jv = "0 �ln��abd �+ 1:55� (29)with "0 = �20=(4��ab)2. This energy determines thelower ritial �eld H1;x above whih Josephson vor-ties are generated:H1;x = 4�"Jv=�0 = �04���ab ln�0:44�abd � : (30)To summarize, the solution for a Josephson vortexpresented here is very similar to the usual �ux linesin isotropi superondutors, but strethed by the fa-tor  in the y-diretion. The reason for this similarityis that the linear approximation to the Josephson re-lation works well away from the vortex enter. Theimportant feature, however, is that at the enter of thevortex there is no normal ore, but rather a phase dropof nearly 2� aross the entral juntion over a distaneof d.3.1. Line-tension energy of Josephson vortexIn this setion, we onsider the line-tension energyof a distorted Josephson vortex, an important param-eter that determines thermal wandering of the vortexline and its response to pinning enters. We onsidera kink-free vortex loated in between the layers 0 and1 and de�ned by the planar displaement �eld u(x).Beause the energy of the straight vortex does not de-pend on its orientation inside the layer plane, for verysmooth distortions with the wavelength larger that �,the line-tension energy is simply determined by the lineenergy in (29),ÆF = Z dx"Jv2 �dudx�2 for ����dudx ���� < ���� u� ���� :This simple result, however, is of limited interest, be-ause most properties of the vortex are determined bydeformations with smaller wavelengths, jdu=dxj=juj �� jkxj � 1=�. In this range, the line-tension en-ergy aquires nonloality, a typial feature of vortexlines. An aurate alulation of the line tension for525



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013this regime presented in Appendix A leads to the re-sult ÆF = �2 "J Z dkx2� k2x ln Ctdkxu2 (31)with "J � E0=d and Ct � 2:86. The important fea-ture is the logarithmi dependene of the e�etive linetension on the deformation wave vetor, whih is a on-sequene of nonloality.4. DILUTE LATTICE, Bx < �0=2�d2When the Josephson vorties are well separated, thelinear and ontinuous approximation an be applied toenergy funtional (1) everywhere exept in the ore re-gions, whih redues it to the anisotropi London modelFL [�(r);A(r)℄ � Z d3r(B2x8� + E02 �� "�rk�+ 2��0Ak�2 ++ 12 �rz�+ 2��0Az�2#) : (32)This means that the lattie solution is just a linear addi-tion of single �ux-line solutions and the lattie energyis determined by this London model. To understandthe nature of the ground state, it is useful to apply theresaling trik [55; 56℄~r = (y; z) and ~A = (Ay; Az=); (33)whih in the ase of zero z-omponent of the mag-neti �eld preisely redues the system to the isotropistate [24℄. Therefore, the ground state on�guration insaled oordinates is given by a regular triangular lat-tie. In real oordinates, this state orresponds to thetriangular lattie strongly strethed along the diretionof the layers.Within the anisotropi London model, the lattieis degenerate with respet to rotation in saled oor-dinates. In real oordinates, this orresponds to an�ellipti rotation� illustrated in Fig. 4. In partiular,there are two aligned on�gurations, in whih Joseph-son vorties form vertial staks along the z axis (seeFig. 5). For these on�gurations, the vertial distanebetween the Josephson vorties in the staks, az, andthe separation between the staks, ay, are given byaz =p��0=(Bx); ay =p�0=(�Bx); (34)
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Fig. 6. (a) General Josephson vortex lattie and itsparameters. (b ) Orientation of a layered struturewith respet to the ideal lattie (in saled oordinates).The layered struture �ts the ideal lattie only if it isoriented along one of the rystallographi diretions,whih is haraterized by two numbers (m;n), orre-sponding to the expansion of the diretion vetor overthe two basi lattie vetors e1 and e2. Several possi-ble diretions are shown with the orresponding indies(m;n). The layers, together with the lattie parametersa, b, and q, are drawn here for the (3; 1) orientationbeause Josephson vorties mostly �utuate along thelayer diretions and this selets preferential lattie ori-entations. All these mehanisms are onsidered in de-tail below.4.1. Seletion of ground-state on�gurations bythe layered strutureAs the enters of the Josephson vorties must be lo-ated between the layers, the layered struture plays aruial role in the seletion of the ground-state lattieon�gurations. The Josephson-vortex lattie is om-mensurate with the layered struture only at a disreteset of magneti �elds. Due to the �ellipti rotation� de-generay of the lattie within the London approxima-tion, the family of ommensurate latties inludes lat-ties aligned with the layers (see Fig. 5), as well as mis-aligned ones. To make a full lassi�ation of ommen-surate latties, we onsider a general lattie shown inFig. 6a [57; 58℄. The lattie is haraterized by three pa-rameters: the in-plane period a, the distane betweenvortex rows in the z diretion b = Nd, and the rel-

ative shift between the neighboring vortex rows in qa.The lattie shape is haraterized by two dimensionlessparameters, q and the ratio r = b=a. The lattie pa-rameters are related to the in-plane magneti �eld Bxas Bx = �0=(ab). The two aligned strutures in Fig. 5orrespond to q = 1=2. As the replaement q ! 1� qorresponds to a mirror re�etion with respet to thexz plane, every struture with q 6= 1=2 is doubly degen-erate. In addition to giving the general ground states,these latties desribe multiple metastable states withunique properties studied in Refs. [57; 58℄, whih wereview below.We now lassify the exatly ommensurate lattiesto give the set of ommensurate �elds. An equiva-lent geometrial analysis has been done in Ref. [59℄following a somewhat di�erent line of reasoning, butwith the same �nal result for the ommensurate �elds.The analysis of ommensurability onditions an bedone most onveniently in saled oordinates (33). Inthese oordinates, the ground-state on�guration or-responds to a regular triangular lattie with the pe-riod ~a� = q2�0=p3Bx. It is onvenient to onsiderthe orientation of the layered struture with respet tothis lattie rather than vie versa. The layered stru-ture �ts this lattie only if it runs along one of therystallographi diretions (see Fig. 6b ). This dire-tion (m;n) is de�ned by the lattie vetor em;n, whihan be expanded over the two basi lattie vetors:e(m;n) = me1 + ne2. For nonequivalent diretions, mand n must be relatively prime numbers (i. e., thereis no integer other than one that divides both m andn). Any suh diretion orresponds to a set of mathing�elds, denoted byB(m;n)(N). We also let a(m;n), b(m;n),and q(m;n) denote the lattie parameters orrespondingto suh an orientation. Immediately, we obtaina(m;n) = e(m;n) = ~a�pm2 +mn+ n2: (36)It is useful to write the unit vetor ẑ perpendiularto the layers in terms of e(m;n). This vetor is labelleds(m;n) in Fig. 6b and is given bys(m;n) � ẑ = e(m;n) � x̂e(m;n) : (37)Commensurability means that the projetions of thetwo basi lattie vetors on s(m;n) must be integer mul-tiples of the number of layers, i. e.,e1 � s(m;n) = ~nd; e2 � s(m;n) = ~md; (38)527



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013(in saled oordinates, the interlayer distane is d).Using (36) and (37), we rewrite these onditions asp32 ~a� npm2 +mn+ n2 = ~nd; (39)p32 ~a� mpm2 +mn+ n2 = ~md: (40)These equations mean that ~m=~n = m=n. Beause mand n are by de�nition relatively prime, the set ofallowed ~m and ~n is simply given by ~m = Nm and~n = Nn. Therefore, we an represent the ommensu-rability ondition asp32 ~a� = Npm2 +mn+ n2d; (41)whih gives the following set of ommensurate �elds,distanes between neighboring rows b = Nd, and ra-tios r(m;n):B(m;n)(N) = p32 �0N2d2(m2 +mn+ n2) ; (42)b(m;n) = p32 ~a�pm2 +mn+ n2 ; (43)r(m;n) = p3=2m2 +mn+ n2 : (44)Finding the parameter q(m;n) for a general orien-tation is a more ompliated problem. De�ning thediretion to the nearest-row site (m1; n1) (see Fig. 6),we haveq(m;n) = e(m;n) �e(m1;n1)je(m;n)j2 == jmm1 + (m1n+mn1)=2 + nn1jm2 +mn+ n2 : (45)Expressing the neighboring-row separation via(m1; n1),b(m;n) = j[e(m;n) � e(m1;n1)℄je(m;n) = p32 ~a�jm1n�mn1jpm2 +mn+ n2and omparing it with Eq. (43), we an see that thepair (m1; n1) must satisfy the onditionjm1n�mn1j = 1: (46)

It is well known from the theory of numbers that forany relatively prime pair (m;n), there exists a om-plementary pair (m1; n1) satisfying this ondition, andthere is a general reipe to �nd omplementary pairsbased on the Eulid algorithm (see, e. g., Ref. [60℄).Moreover, beause the ombination m1n � mn1 doesnot hange under the substitution m1 ! m1 + m,n1 ! n1+n, there is an in�nite set of pairs that satisfyondition (46) (physially, this orresponds to di�erentlattie sites in the neighboring row). Therefore, theproblem to �nd q(m;n) an be formulated as follows:among all pairs (m1; n1) satisfying ondition (46), �ndthe pair that minimizes jmm1+(m1n+mn1)=2+nn1jand use this pair in Eq. (45). (Pratially, we neednot searh to very high-order diretions.) In the asen = 1 and arbitrary m, the hoie of (m1; n1) is obvi-ous, (m1; n1) = (�1; 0), and we obtainq(m;1) = m+ 1=2m2 +m+ 1 : (47)We stress that these results essentially rely onthe linear London approximation, whih implies avery strong inequality ~a� � d, or equivalently,Npm2 +mn+ n2 � 1. The number of vortex-freelayers per unit ell is given by N � 1. The ase N = 1represents a speial situation where all the layers are�lled with vorties and are equivalent. It is interest-ing to note that even for a dilute lattie, we an haveJosephson vorties in every layer (N = 1) in the ase ofhigh-order ommensurability (m;n � 1). In an idealsituation, the lattie transfers with hanging the mag-neti �eld between di�erent ommensurate on�gura-tions via a series of �rst-order phase transitions. Thenumber of ompeting states rapidly inreases as the�eld dereases.A full analysis of the strutural evolution requiresonsideration of the energy. In the London limit, a veryuseful expression for the energy of the general lattie inFig. 6a has been derived in Ref. [60℄. We outline thisderivation and present the �nal result in a somewhatdi�erent form. For the lattie in Fig. 6a, the interationenergy in the London limit is given byf intJl = B2x8� �� 24Xl;k (1+�2ab "2a2 (2�l)2+ �2�b2 (k�ql)�2#)�1 �� Z dy dz(1 + �2ab "2a2 (2�z)2 + (2�y)2b2 #)�135 :528



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorsUsing the formula1Xk=�1 1(k + v)2 + u2 = �u sh (2�u)h (2�u)� os (2�v)we an sum over k and integrate over y, leading tof intJl = B2x8� b22��2ab ���abb sh (b=�ab)h (b=�ab)� 1 ++ 1Xl=1 1gb(l) sh [2�gb(l)℄h [2�gb(l)℄� os (2�ql) � 1Z0 dz 1gb(z)35with gb(z) = q(b=2��ab)2 + r2z2 and r = b=a. Thisexpression signi�antly simpli�es in the intermediateregion b� 2��ab, where we an use the expansion��abb sh (b=�ab)h (b=�ab)� 1 � 2��2abb2 + �6and drop b2= (2��ab)2 in gb(z) meaning that gb(z) !! rz. This allows us to represent the interation en-ergy in this regime as [57℄f intJl = B2x8� + Bx�0(4�)2 �ab� �� �12 ln� �02��ab�Bx�+ E � ln 2 +GL(r; q)� (48)with E = 0:5772 being the Euler onstant andGL(r; q) = �r6 + 1Xl=1 os (2�ql)� exp (�2�rl)l[h (2�rl)� os (2�ql)℄ �� 12 ln(2�r): (49)The dimensionless funtion GL(r; q) depends only onthe lattie shape. Its absolute minimum orrespondingto the triangular lattie is given by GL(p3=2; 1=2) == �0:4022. A peuliar property of GL(r; q), follo-wing from the rotational degeneray, is that this fun-tion also has this value for the whole set of pairs(r; q) = (r(m;n); q(m;n)) orresponding to the di�erentlattie orientations. In partiular, for (m;n) = (m; 1),we haveGL p3=2m2 +m+ 1 ; m+ 1=2m2 +m+ 1! = GL �p3=2; 1=2� :This funtion also has very peuliar behavior at smallr, whih is important for the statistis of metastablestates [58℄: at r ! 0 it aquires peaks at all rationalvalues of q = k=l. Large-order peaks with the denomi-nator l develop as r drops below 1=(2�l).

For layered superondutors, we haveb = Nd; a = �0BxdN ; r = N2 BxBd2with Bd2 = �0=(d2) and, adding the energy of iso-lated Josephson vorties, we an write the total energyof the lattie asfJl(N; q; h) = B2x8� ++ Bx�0(4�)2�ab� �12 ln� 1h�+ 1:432 +GL(r; q)� (50)with h � 2�Bx=Bd2 and r = N2h=2�. For a givenh, the ground state on�guration is determined by theminimum of GL(N2h=2�; q) with respet to disrete Nand ontinuous q. As follows from Eq. (42), perfet �tswhere GL reahes its absolute minimum our at theset of redued �elds h = h(m;n)(N), whereh(m;n)(N) = p3�N2(m2 +mn+ n2) : (51)At these �elds, this energy reprodues the result in (35).The �eld dependene of GL for the ground stateis shown in Fig. 7. The ontinuous London modeldoes not not aurately desribe layered superon-dutors at high �elds. To obtain lattie struturesin this region, one has to onsider the more generalLawrene�Doniah model. The transition between thealigned latties have been studied within this model byIhioka [61℄. However, our analysis in the next setionshows that at many �elds, the true ground state is notgiven by an aligned lattie.4.2. Evolution of ground-state on�gurationswithin the Lawrene�Doniah modelThe aurate analysis of lattie on�gurationswithin the Lawrene�Doniah model whih we reportin this setion was only published in short proeed-ing [62℄. Independently, suh numerial analysis wasdone by Nonomura and Hu [63℄, with fully onsistentresults.At high in-plane magneti �elds, the spatial varia-tions of the �eld are very small and an be negleted inthe �rst approximation. In this limit, the only relevantdegrees of freedom are the superonduting phases and6 ÆÝÒÔ, âûï. 3 (9) 529
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librium phase distribution (equivalent to (2) when weignore the spatial dependene in Bx):r2�y�n + sin (�n+1 � �n + h�y)�� sin (�n � �n�1 + h�y) = 0: (54)We again onsider a general lattie shown in Fig. 6awith the in-plane period a, with N layers betweenneighboring rows, and with the relative shift qa be-tween relative rows, where a and N are related to theredued �eld as h = 2�d=Na. It is su�ient to �ndthe solution for the phase in one unit ell, 0 < y < a,1 � n � N , using appropriate quasiperiodiity ondi-tions for the phase. The total lattie energy per unitvolume an be represented asf� = Bx�0(4�)2�ab�u(N; q; h); (55)where the redued energy u(N; q; h) per unit ell isgiven byu(N; q; h) = 1� NXn=1 aZ0 d�y �� "12 �d�nd�y �2 + 1� os (�n+1 � �n + h�y)# : (56)Using a relaxation method to solve (54) numeriallywithin one unit ell, we an �nd the energy u for anygiven values of N , q and h. To math London repre-sentation (48), we write u(N; q; h) in the formu(N; q; h) = 12 ln 1h + 1:4323+G(N; q; h) (57)where the funtion G(N; q; h) de�ned by this equationapproahes the London limit GL(r = N2h=2�; q) ash! 0.We �rst onsider the in�uene of the layered stru-ture at small �elds. As shown in Appendix B, inthe lowest order with respet to h, the layered stru-ture gives an orientation-independent orretion to en-ergy, G � (h=32) ln(Ch=h). In the higher (quadrati)order, the layered struture generates an orientation-dependent orretion to the lattie energy, leading to abreakdown of the �ellipti-rotation� degeneray of thelattie. To study this e�et quantitatively, in Fig. 8,we plot the omputed �eld dependenes of G(N; q; h)for several lattie orientations at the orresponding re-dued ommensurate �elds h(m;n)(N) given by (51). Atsmall h, h < 0:05, negleting a very weak dependene530
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A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013we �t their energies at the shifted mathing �eld forh < 0:1 to smooth urves and subtrat these urves.This proedure gives G(1;1) �G(1;0) � �0:011h2.We an now explore the evolution of the ground-state on�guration by diret minimization of the en-ergy with respet to the lattie parameters N andq de�ned in Fig. 6. For this, we have omputedthe redued ground-state energy de�ned as G(h) �� minN;q[G(N; q; h)℄. We heked that if we onsideronly aligned latties, the results of Ihioka [64℄ are re-produed for the transition �elds between latties withdi�erent periods N in the ase of large anisotropy. Foromparison, we also made a similar alulation for theLondon model and omputed the �eld dependene ofthe funtion GL(h) = minN;q[GL(r = N2h=(2�); q)℄where GL(r; q) is de�ned in Eqs. (48) and (49). InFig. 7, we ompare �eld evolutions of these ground-state redued energies and the orresponding -axis pe-riod N . For learer omparison, we subtrated fromG(h) its �tted orretion from GL(p3=2; 1=2) at smallh given in (58). Values of the London ommensurate�elds h(m;n)(N) are shown on the top axis with sev-eral low-order �elds marked by orresponding indiesusing the format (m;n)N . As expeted, GL(h) reahesits absolute minimum for every h(m;n)(N). We an ob-serve several interesting properties. Beause the lattieorientation with indies (m;n) = (1; 0) is not favoredby the layered struture, several low-N on�gurations,3 � N � 6, expeted at h = h(1;0)(N) are skipped.However, as an be seen from the inset in Fig. 10, forN = 5 and 6, the ground-state energy is smaller thanthe energies of these states at h = h(1;0)(N) only bya tiny value. For h < 0:2, the atual evolution of thelattie struture starts to roughly follow the Londonroute (exept for skipped state (1; 0)6 near h = 0:16)but with a small negative o�set, i. e., we again see thatthe mathing �elds are systematially shifted down inomparison with their London values.The �eld dependene of the energy funtionG(N; q; h) in an extended �eld range is shown inFig. 10 for the ground state and ompeting states.Eah urve orresponds to the minimum of G(N; q; h)with respet to q at �xed h and N and is markedby its value of N . We also show the �rst six lattieon�gurations that are realized with dereasing the�eld. The inset in the �gure blows up the low-�eldregion. We an see that many lattie on�gurationsompete for the ground state at small �elds and atseveral �elds (e. g., at h �; 0:19; 0:137; 0:105 : : :), oneor more lattie on�gurations have energies very loseto the ground-state energy. We also note that thereare several extended �eld ranges where in the ground

state all layers are homogeneously �lled with vorties(N = 1) even in the region of the dilute vortex lattie,e. g., 0:115 < h < 0:17 and 0:21 < h < 0:38.We see that an aurate onsideration within bothLondon and Lawrene�Doniah models shows that theground state of the Josephson vortex lattie at lowtemperatures does not give any preferene to the lat-ties aligned with the layers. Therefore, for equilib-rium �eld dependenes we annot expet to observeany strong features at the mathing �elds of these lat-ties, B(1;0)(N) and B(1;1)(N) given by Eq. (43). Nev-ertheless, lear ommensurability osillations have beenobserved experimentally in underdoped YBCO in irre-versible magnetization [28; 29℄ and nonlinear resistiv-ity [30℄. The period of these osillations orresponds tothe �elds B(1;0)(N), indiating that in this material, thealigned lattie (1; 0) ours to be preferable for somereason. We note that in real materials, due to smalldi�erenes between the energies of di�erent on�gura-tions, aligned latties an be seleted by external fa-tors, suh as interation with orrelated disorder (twinboundaries or disloations) or the sample surfae. Wealso see in what follows that the aligned lattie with in-dies (1; 0) is favored by thermal �utuations. Finally,we mention the work of Ikeda and Isotani [64℄, whoperformed similar analysis of the ground-state on�gu-rations for the �eld applied along the layers within thelowest Landau level approximation.4.3. Properties of metastable states in theLondon modelJosephson vorties an slide easily along the layers,but there is a huge barrier for the motion aross the lay-ers. This property makes it di�ult to equilibrate thelattie. It also leads to the appearane of a very largenumber of metastable states. The properties of thesestates have been onsidered in Refs. [57; 58℄. Systema-tially, metastable states at a �xed -axis period an besampled by �rst slowly ooling down the superondu-tor at a �xed magneti �eld and then in a seond stepdereasing the magneti �eld at a low temperature [58℄.We assume that the prepared starting on�guration isthe aligned lattie. As the -axis period N is lokedby the layers, the lattie strethes along the layers withlowering the �eld, i. e., the ratio r = b=a dereases.During strething, these �xed-N metastable states gothrough a sequene of nontrivial strutural transforma-tions. In the London regime, the aligned on�gurationbeomes unstable at r0 � 1:51=(2�) � 0:24 [57℄. Thisinstability is driven by the repulsion between neighbor-ing vorties in the vertial stak. At low r < r0, the pa-532
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(see Fig. 11). The obtained pattern is quite peuliar.At r > r0, the only minimum is at q0(r) = 1=2. Be-low r = r0, this trajetory symmetrially splits intotwo. As r dereases further, many more minima ap-pear forming a omplex hierarhial struture. Thepattern an be viewed as a series of �quasibifurations�ourring near rational values of q. �Quasibifuration�orresponds to the appearane of a new branh belowa ertain value of r in the viinity of the old branh.The branhes turn at the points (q(m;n); r(m;n)) orre-sponding to ground states. The evolution of the initialstate is desribed by the two main trajetories sym-metrially split from q = 1=2. The trajetory withq > 1=2 �quasi-bifurates� at q = Fj=Fj+1 where Fjare the Fibonai numbers and approahes the �goldenratio� (p5 � 1)=2 � 0:618 as r ! 0. It goes through533



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013
0.25

0.5 0.9
q

0.80.70.6 1.0

0.30

0.20

0.15

0.10

0.05

0

r

Fig. 11. Levitov's hierarhial plot of metastable statesin the qr plane [58℄ (in this plot, q is seleted within theinterval [0:5; 1℄). Eah dotted urve is obtained fromthe loal minima of the funtion GL(r; q) with respetto q at a �xed r. New branhes appear as a result of�quasibifurations�. Eah �quasibifuration� is assoi-ated with a rational number. The branhes turn at thepoints (q(m;n); r(m;n)) orresponding to ground states(marked by squares and labelled by the indies mn inthe plot)ground states with the indies also desribed by the Fi-bonai sequene, (m;n) = (Fj+1; Fj). Unfortunately,these exiting preditions have never been veri�ed ex-perimentally beause there is no diret way to probethe struture of the Josephson vortex lattie.4.4. Elastiity of a dilute Josephson vortexlattieJosephson vorties easily slide along the layers butmotion aross the layers is strongly suppressed by in-trinsi pinning from the layers. Due to the intrinsipinning, z-axis �utuations of the vortex lines ourvia kink formation. In moderately anisotropi layeredsuperondutors, suh as YBCO, in whih the -axis o-herene length is larger than or omparable with the in-terlayer spaing d, the intrinsi pinning potential V (uz)an be desribed as a osine funtion of the z-axis vor-tex displaements V (uz) = �V0 os(2�uz(x)=d). Butsuh desription beomes inadequate in strongly lay-ered materials, where the struture of kinks is verysimilar to the struture of a panake vortex.In strongly layered materials at low temperatures,we an neglet kink formation and take only in-planelattie deformations u(r) � uy(r) into aount (planar-

�utuations model). In this ase, we an derive thenonloal elasti energy in the k-spae asFel = 12 Z d3k(2�)3 �� �11(k)k2y + 44(k)k2x + 66k2z� ju(k)j2 (59)with the elasti moduli66 = Bx�0(8�)2�2 ; (60)11(k) = B2x=4�1+�2abk2z+�2 �k2y+k2x�� Bx�0(8�)2�ab� ; (61)44(k) = B2x=4�1 + �2abk2z + �2 �k2y + k2x� ++ Bx�0(4�)2�ab� ln 1dqa�2z + (kx=�)2 : (62)While the tilt [44(k)℄ and ompression [11(k)℄ mod-uli are not sensitive to the exat lattie struture, theformula for the shear modulus 66 is valid only for per-fet mathing between the Josephson vortex lattie andlayered struture, whih is ahieved at mathing �elds(42). For a general lattie shown in Fig. 6a we anderive a more general expression for 66 using repre-sentation (48)�(49) for the lattie energy [57℄ and therelation between lattie deformation and hange of theparameter q, Æq = r du=dz,66 = Bx�0(8�)2 �2 g66(r; q) (63)withg66(r; q) = 4r2 �2�q2GL(r; q) = �(4�)2 r2 �� 1Xl=1 os(2�ql) h(2�rl)� sin2(2�ql)� 1(h(2�rl)� os(2�ql))3 l sh(2�rl):This formula reprodues the result in (60) for the om-mensurate on�gurations (r; q) = (r(n;m); q(n;m)). Italso desribes instability of the aligned on�guration(q = 1=2) at r � 0:24 [57℄.The softest mode in the planar model orre-sponds to shearing between neighboring planar arraysof Josephson vorties. The harmoni approximationbreaks for this mode �rst. The simplest extension ofthe linear elasti energy that desribes strong interpla-nar �utuations amounts replaing the ontinuous dis-plaement �eld u(r) by the displaement of the planar534



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorsarrays uj(x; y) � u(x; y; jb) and replaing the shearterm in the energy by the nonlinear interation termZ d3r662 �dudz�2 !! Z d2r a266(2�)2 bXj �1� os�2�uj+1 � uja �� :Suh an extension has been used to study the strong-�utuation region [65℄.5. DENSE LATTICE, Bx > �0=2�d2The distane between Josephson vorties dereasesas the magneti �eld inreases, and at the �eld B �� Br = �0=2�d2 = Bd2=2� beomes of the order ofthe vortex-ore size. In ontrast to the Abrikosov vor-tex lattie, for whih overlap of the vortex ores marksthe disappearane of superondutivity, for the Joseph-son vortex lattie this �eld just marks a rossover to anew regime, the dense Josephson vortex lattie. Theexistene of this regime was pointed out by Bulaevskiiand Clem [25℄. In the dense Josephson vortex lattie,the gauge-invariant phase di�erene is a smoothly in-reasing funtion of distane and the Josephson ou-pling energy an be treated as a small perturbation.This allows for the following quantitative desription.5.1. Very high �elds: Quantitative desriptionusing an expansion in the Josephson ouplingAt high �elds Bx > Br, vorties homogeneously �llall the layers. This means that all layers are equivalentand the in-plane lattie period is ~a = 2�=h (see Fig. 12).When the strong inequality Bx � Br (h � 1) is sa-tis�ed, Eq. (54) for the phases an be solved using anexpansion with respet to the Josephson urrents. In
z y a d
Fig. 12. Shemati distribution of urrents in the denseJosephson vortex lattie. The irles mark the entersof the Josephson vorties

the zeroth order, we an onstrut a regular lattie withan arbitrary translation from layer to layer by using theform �(0)n = �n(n� 1)2 :This orresponds to the gauge-invariant phase di�er-ene '(0)n;n+1 = �n+ h�y;i. e., the planar latties in the neighboring layers areshifted by the fration q = �=2� of the in-plane lattiespaing ~a. In the �rst order, we obtainr2�y�(1)n + sin (�n+ h�y)� sin (�(n� 1) + h�y) = 0whih gives�(1)n (�y) = 1h2 [sin (�n+ h�y)� sin (�(n� 1) + h�y)℄ :Substituting this solution in (53), we obtain the energyper unit volume up to the seond order with respet tothe Josephson oupling,f�(�; h) = "Jd2 �1� 1� os�2h2 � : (64)We an immediately see that the minimum energyfmin(h) = ("J=d2)(1�1=h2) is ahieved at � = �, or-responding to the triangular lattie shown in Fig. 12.The phase distribution in the ground state is given by�n(�y) � �n(n� 1)2 + 2(�1)nh2 sin (h�y) : (65)From this solution, we an reover the distributions ofthe in-plane and Josephson urrentsjy;n(y) � �2(�1)nh jJ os�2�dBxy�0 � ;jz;n(y) � �(�1)njJ �� sin��4(�1)nh2 sin�2�dBxy�0 �+ 2�dBxy�0 � ;and a weak modulation of the in-plane �eldBx(y) � Bx � (�1)n�20Bx(2�d�)2 os�2�dBxy�0 � :A shemati distribution of the urrents is shown inFig. 12.535



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 20135.2. Dense lattie lose to the rossover region.Strutural phase transitionWhen the magneti �eld approahes the rossover�eld �0=(2�d2), the perturbative approah of the pre-vious setion beomes insu�ient and we have to obtaina full solution of nonlinear equation (54). The generalsolution for the lattie with an arbitrary phase shift �an be written as�n(�y) = �n(n� 1)2 + g ��y + �nh � ; (66)where g(�y) is a periodi funtion, g (�y + 2�=h) = g(�y),that obeys the equationd2gd�y2 + sin�g ��y + �h�� g (�y) + h�y��� sin�g (�y)� g ��y � �h�+ h�y � �� = 0: (67)The redued energy �f � f�d2="J an also be writtenin terms of g(�y):�f = 2�=hZ0 hd�y2� (12 �dgd�y�2 ++ 1� os hg ��y + �h�� g (�y) + h�yi) : (68)Equation (67) does not have an analyti solutionand has to be solved numerially. Lattie on�gura-tions of the dense lattie have also been investigatedusing the ode developed for the lattie with a generalperiod N . Both approahes give idential results. Nu-merial investigation shows that the triangular lattiewith � = � gives the ground state for h > 1:332. Ath � 1:332, the system has a seond-order phase tran-sition to a lower-symmetry lattie (see lattie stru-tures for h = 1:35 (a) and h = 1:2 (b ) in Fig. 10).The �eld dependene of � and the orresponding lat-tie shift q are shown in Fig. 13. Ikeda and Isotani [64℄found that within the lowest Landau level approxima-tion, this strutural phase transition ours at a some-what higher value, h � 1:4.In Fig. 14, to study the validity range of the high-h approximation in the previous setion, we plot theomputed �eld dependene of the redued energy to-gether with its high-�eld asymptotis, derived in theprevious setion. It an be seen that the perturbativeapproah gives a good approximation for the energydown to h � 2.
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Fig. 13. Field dependene of the phase shift � and theorresponding lattie shift q for the dense Josephsonvortex lattie. At h � 1:332, the lattie experienes aontinuous strutural phase transition
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ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorsThe ground-state phase distribution is given byEq. (65). We now onsider small deformations of thelattie and split the total phase into a smooth part vnand the part ~�n rapidly osillating in the y diretion:�n(�r) = �n(n+ 1)2 + vn(�r) + ~�n(�r); (70)where we assume that dvn=d�y � vn and ~�n � 1. Be-ause the smooth part of the gauge-invariant phase dif-ferene is given by h(�y+(vn+1 � vn) =h)+�n, the quan-tity un = � (vn+1 � vn) =h represents a loal lattiedisplaement. Substituting representation (70) in theenergy (69), expanding with respet to ~�n, and drop-ping rapidly osillating terms, we obtainF� � E0Xn Z d�r2412  d~�nd�y !2 + 12 �dvnd�r �2 ++ �~�n+1 � ~�n� sin (vn+1 � vn + h�y + �n)35 : (71)As ~�n rapidly osillates only in y diretion, we keeponly its �y derivative. Minimizing this energy with re-spet to ~�n gives~�n � (�1)n sin (vn+1�vn+h�y)+ sin (vn�vn�1+h�y)h2 :Substituting this solution in Eq. (71) and averagingwith respet to �y, we �nally obtain the oarse-grainedenergy of the deformed dense Josephson vortex lat-tie [69℄, whih we write in real units:F� � E02 Xn Z dr�� "�dvndr �2 � os (vn�1 + vn+1 � 2vn) + 1(�Jh)2 # : (72)This energy desribes the phase �utuations in a largein-plane magneti �eld. The �rst term is just theusual in-plane phase sti�ness energy. In the elastiitytheory language, this term represents the ompression(dvn=dy) and tilt (dvn=dx) ontributions. The seondterm represents the shearing interations between theJosephson vortex arrays in neighboring juntions. Itoriginates from the Josephson oupling energy and anbe viewed as the e�etive Josephson oupling renormal-ized by the in-plane magneti �eld. Roughly, we anstate that as the magneti �eld inreases, the e�etiveJosephson energy dereases as 1=h2 and the e�etiveJosephson length �Jh inreases linearly with h,�Jh = �Jh = 2�2d3Bx�0 : (73)

For the deformation slowly hanging from layer tolayer, we an expand the osine in Eq. (72) and obtainthe harmoni elasti energy of the dense Josephson vor-tex lattie in terms of smooth phase deformations:F��el� E02 Xn Z dr�� "�dvndr �2 + (vn�1 + vn+1 � 2vn)22(�Jh)2 # == E02d Z d2kk(2�)2 �=dZ��=d dkz2� �� "k2k + 2 (1� os kzd)2(�Jh)2 #jvkj2: (74)Using the relation between the phase perturbationand lattie displaementsvk = � huk�J (exp(ikzd)� 1) ; (75)we an rewrite the elasti energy in a more traditionalway, via lattie deformationsF��el = 12 Z d2kk(2�)2 �=dZ��=d dkz2� �� h11(kz)k2k + 66~k2zi jukj2 (76)with the elasti onstants11(kz) = B2x4� 1~k2z�2ab ; 66 = �2032�3d24�2ab ;where we use the notation ~kz � 2 sin (kzd=2) =d. Wenote that in our ase, the nonloal tilt modulus 44(kz)is idential to the ompression modulus 11(kz) andthey oinide with elasti moduli within the anisotropiLondon model (61) and (62) in the limit ~kz�ab �� 1; kx�. These elasti energies (74) and (76) anbe used to study weak �utuations and weak pinningof the dense Josephson vortex lattie. The shear mod-ulus is �eld independent in the dense-lattie regime. Itan be veri�ed to math the dilute-lattie result (60)at the rossover �eld.5.4. Lattie on�gurations and magnetiosillations in �nite-size samplesIn this setion, we onsider dense-lattie on�gu-rations in �nite-size samples. This study is atually537



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013motivated by experimental observations of magnetiosillations in small-size BSCCO mesas with lateralsizes 2�20 �m [44�48℄. Suh small-size mesas behaveas staks of intrinsi Josephson juntions with strongindutive oupling between the neighboring juntions.The detailed analyti theory desribing the magneti�eld dependenes of lattie on�gurations and the rit-ial urrent has been developed in Ref. [67℄. Lattiestrutures also have been extensively explored numeri-ally in [45; 47; 68; 69℄, and both approahes give iden-tial results. In a small-size sample, the lattie stru-ture is determined by two ompeting interations: theinteration with boundaries, whih favors an alignedretangular on�guration, and the bulk shearing inter-ation between neighboring layers, whih favors a tri-angular on�guration. Depending on the mesa width Land the magneti �eld, two very di�erent regimes anbe realized. In the large-size regime, the vortex lat-tie is triangular and is only deformed near the edges.In the small-size regime, the lattie struture expe-rienes a periodi series of phase transitions betweenretangular and triangular on�gurations. The trian-gular on�gurations in this regime are realized only innarrow regions near magneti �eld values orrespond-ing to an integer number of �ux quanta per juntionwhere the interation with edges vanishes. The typi-al width of the mesa that separates these two regimesis given by the length �Jh in Eq. (73), whih is pro-portional to the applied magneti �eld. Hene, therossover from one regime to another is driven by themagneti �eld and the orresponding rossover �eldsale is BL = BrL=�J = L�0=(2�2d3); for Bx > BLthe small-size regime is realized. The size��eld phasediagram is shown in Fig. 15. The regimes are har-aterized by distintly di�erent osillating behavior ofthe ritial urrent as a funtion of the magneti �eld.In the small-size regime, the ritial urrent osillateswith the period of one �ux quantum per juntion, sim-ilar to a single juntion. In the large-size regime, dueto the triangular lattie ground state, the osillationperiod is half the �ux quantum per juntion.The quantitative study of the desribed behavior isbased on redued energy (69), whih has to be rewrit-ten for the �nite-size ase 0 < �y < �L � �Ly and alsoassuming that the system is uniform along the �elddiretion, i. e., R d�r ! �Lx R �L0 d�y. This energy has tobe supplemented with the boundary onditions at theedges, d�n=d�y = 0 for �y = 0; �L. The important pa-rameter in the ase of a �nite-size sample is the totalmagneti �ux through one juntion, � = BxdL, whihis onneted with the redued magneti �eld by therelation h�L = 2��=�0. In the dense-lattie limit, we

again use the representation in Eq. (70) ontaining thesmooth phase vn, and the rapidly osillating ompo-nent ~�n. It is natural to assume that the interationswith the boundaries preserve the alternating nature ofthe vortex lattie. In this ase, symmetry allows takingthe smooth phase in the formvn(�y) = �n+ (�1)nv(�y); (77)where � desribes the translational displaement of thelattie and v desribes lattie deformations with re-spet to the triangular lattie. In partiular, it an beshown that the maximum value of v(�y), vmax = �=4,desribes the retangular lattie, i. e., idential �n inall layers up to a 2� phase shift. The rapid phase or-responding to the smooth phase (77) beomes ~�n(�y) �� (�1)n2 os(2v) sin (�+ h�y) =h2. Averaging with re-spet to the rapid osillations for suh vn(�y) gives theredued energy f� = F��J=(NLxE0) per layer and perunit length along x:f� � � 1h �sin (2v0) os�� sin (2vL) os �h�L+���++ 12 �LZ0 d�y "�dvd�y�2 � 1 + os(4v)h2 # ; (78)where the bulk part diretly follows from Eq. (72) forgeneral vn(�y). Varying this energy with respet to v(�y),we obtain that it obeys the stati sine-Gordon equationd2vd�y2 � 2h2 sin (4v) = 0 (79)with the boundary onditionsdvd�y (0) = � 2h os(2v0) os�;dvd�y (L) = � 2h os(2vL) os �h�L+ �� : (80)Substituting the solution of these equations in energyfuntional (78) gives the energy as a funtion of the lat-tie shift �, f�(�). The minimum of the energy withrespet to � gives the ground state for given h and �L.Higher-energy states at other values of � typially arrya �nite urrent. The total Josephson urrent �owingthrough the stak is proportional to df�=d�. Takingderivative of funtional (72) with respet to � and as-suming that at every � it is minimized with respet tov(u), we obtain the total urrent in units of jJ�JLx:J(�) = 1h �� �sin (2v0) sin�� sin (2vL) sin �h�L+ ��� : (81)538
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Fig. 15. Size�magneti �eld phase diagram of the on�ned Josephson-juntion stak. The dashed line separates the large-size and small-size regimes. Blak lines orrespond to integer �ux quanta per juntion. Shaded areas mark regions of theretangular-lattie ground state. Representative lattie on�gurations in two points are illustrated by plots of osillatingJosephson urrents in two neighboring layers. Small ellipses mark the enters of the Josephson vortiesAn important onsequene of this equation is that anonzero urrent exists only if the surfae deformationsv0 and vL are �nite.The general solution of Eqs. (79) and (80) an bewritten in terms of the ellipti integrals, and an elab-orate analyti analysis is possible [67℄. Here, we sum-marize the most important results of this analysis fortwo limit ases.In the large-size regime, L � �Jh or Bx � BL,the smooth alternating deformation v(�y) has a solutionin the form of two isolated surfae solitons [67℄. Forexample, near the edge �y = 0, suh a soliton solutiondeaying from the surfae into the balk is given by thewell-known formula for the sine-Gordon kinktg v = tg v0 exp��2p2�y=h� ; (82)where the boundary value v0 an be found fromthe boundary ondition (80), leading to tg (2v0) == p2 os�. Using this solution, we an �nd the surfaeenergy and surfae urrent for the edge �y = 0 as fun-tions of the lattie displaement �:fs(�) = 1p2h �1�p2 + os 2� � ; (83)js(�) = � 1p2h sin 2�p2 + os 2�: (84)The 2� periodiity of these results is a onsequene ofthe triangular lattie struture: the hange of � by �

orresponds to the vertial lattie displaement by onelayer. A similar solution is realized at the opposite edge�y = �L. Its energy and urrent an be obtained from theabove results using the substitution �! �+h�L. For awide stak, we an neglet the interation between thesolitons, and the total Josephson urrent is then givenby the sum of two independent surfae urrents,J(�) = js(�) + js(�+ h�L):The ritial urrent J an be found as a maximum ofJ(�) with respet to �, whih gives the following resultin real units:J(B) = JJ �02�dLBxF �2�dLBx�0 � ; (85)where JJ = jJLLx is the maximum Josephson ur-rent through the sample at zero �eld, and the os-illating funtion F(�) has the period � and in therange 0 < � < �=2 an be approximated by F(�) �� 0:128+0:888 os(�)+0:021 os(3�) . We an see thatin this regime, the produt BxJ has the periodiity ofhalf the �ux quantum per juntion and reahes max-ima at the points � = dLBx = j�0=2 with BxJ;max �� 1:035JJ�0=(2�dL). This orresponds to the low-�eld part of the plot in Fig. 16. All other propertiesof the sample should also osillate with the period ofhalf the �ux quantum. Suh osillations of the �ux-�owresistivity in BSCCO miro-mesas were �rst deteted539
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Fig. 16. Illustration of the osillating magneti �eld de-pendene of the ritial urrent for L = 4�J . Crossoverbetween the �0=2 and �0 periodiities is seen ath�L = Bx=BL � 1. Shaded areas show the regionsof stable retangular lattieexperimentally in Ref. [44℄ and later on�rmed by sev-eral experimental groups.In the small-size regime L < �Jh or Bx > BL, theinteration with edges dominates. As a onsequene,extended regions of the retangular lattie appear inthe phase diagram (see Fig. 15). The energy of theretangular lattie, v = ��=4, oinides with the well-known result for a single juntionfret(�) = � 2h sin�hL2 � sin��+ hL2 � (86)and has the minimum fret = �2 jsin (hL=2)j =h at � == �hL=2 + Æ�=2 with Æ = sign [sin (hL=2)℄. An a-urate analysis [67℄ shows that the retangular lattieis stable with respet to small deformations at � == �h�L=2+�=2 in the regions jh�L=2��(k+1=2)j < 1=4only if the inequality��sin �h�L=2��� < tg�p2�L=h� =p2 (87)is satis�ed. These regions are plotted in the phase di-agram in Fig. 15. This means that the retangularlatties �rst appear in the ground state at the pointsh�L = (k + 1=2)2� for �L=h � l1 = artan �p2� =p2 �� 0:675. This orresponds to the dashed line shown inthe phase diagram in Fig. 15. But if L=h is only slightlysmaller than this value, the retangular lattie beomesunstable as the urrent inreases and the on�gurationat the ritial urrent still orresponds to the deformedlattie. The aurate analysis shows that there is an-other typial value of the ratio L=h, L=h = l2 � 0:484,below whih the retangular lattie remains stable upto the ritial urrent.

In the region h� �L, the retangular lattie is real-ized in the most part of the phase diagram exept nar-row regions in the viinity of the integer-�ux quantalines h�L=2� = �=�0 = k, where the interation withthe edges vanishes. Swithing between the retangularand triangular latties in the ground state ours via a�rst-order phase transition [67℄ at the transition �eldsdetermined by the equation����sin�ht �L2 ����� = 32 �Lht : (88)At high �elds, the ritial urrent approahes the las-sial Fraunhofer dependene for a single small juntion,JF (�) = JJ j sin(��=�0)j=j��=�0j. Two important de-viations persist at all �elds and sizes: (i) Near thepoints � = k�0, due the phase transitions to the tri-angular lattie, the ritial urrent never drops to zeroand atually always has small loal maxima; (ii) Awayfrom the points � = k�0, the ritial urrent is reahedat the instability point of the retangular vortex lattieand it is always somewhat smaller than the �Fraun-hofer� value JF (�).In the region B � BL, the rossover between thetwo desribed regimes takes plae. In the osillationsof the ritial urrent, this rossover manifests itself bybreaking the �0=2 periodiity: the maxima at the half-integer �ux-quantum points � = (k + 1=2)�0 progres-sively beome larger while the maxima at the integer�ux-quantum points � = k�0 beome smaller. Thisrossover behavior of the ritial urrent is illustratedin Fig. 16. Suh behavior was indeed observed experi-mentally in very narrow BSCCO mesas [45; 47; 48℄.6. THERMAL FLUCTUATIONSIn this setion, we onsider thermal �utuations ef-fets for the Josephson vortex lattie. Con�nement ofthe vortex ores in between the layers leads to strongsuppression of the vortex motion aross the layers,whih an only our via formation of kinks. There-fore, as a �rst step, we an neglet these energy-ostlydisplaements and onsider only planar �utuationsof vorties along the layers. This simple model de-sribes �utuation behavior in the most part of the�eld�temperature phase diagram, but it ours to beinsu�ient for desribing the melting transition of thelattie. In general, thermal e�ets for Josephson vor-ties are muh weaker than for a panake-vortex lat-tie, and phase transformations are expeted only inthe viinity of the transition temperature. On the other540



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorshand, due to the intrinsi pinning potential and involve-ment of kink exitations, the overall behavior near themelting line is rather ompliated and, in spite of quiteextensive theoretial e�ort [65; 66; 70�74℄ and numeri-al simulations [75; 76℄, there is no lear onsensus onthe nature of the melting transition and struture ofthe phase diagram for the magneti �eld aligned withthe diretion of the layers.6.1. Thermal e�ets for the dilute Josephsonvortex lattie: the intermediate phase problemA standard �rst step to study thermal �utuatione�ets is to evaluate the mean-squared loal �utuationdisplaement from elasti energy (59)4):
u2� = Z d3k(2�)3 T11(k)k2y + 44(k)k2x + 66k2z : (89)Introduing the redued wave vetor ~k askx = kBZ~kx=p; ky = kBZ~ky=p;kz = kBZp~kz ; (90)where kBZ =p4�Bx=�0 is the average wave vetor ofthe Brillouin zone, we rewrite this integral in a moreexpliit form
u2� = (4�)2 kBZ�2Tp�0Bx Z d3~k(2�)3 24� 1~k2 � 14� ~k2y ++ 0� 1~k2 + ln b0=dq1 + �2~k2x1A ~k2x + ~k2z4 35�1with � � 1. Evaluating this integral yields
u2�a20 = 0:12Tb0pln (b0=d)"0 ; (91)where a0 = p�0=Bx and b0 = p�0=Bx are thetypial lattie onstant in the y and z diretions. Fromthis result, we an obtain an estimate for the typialtemperature at whih �utuations beome strong [65℄:Tf � b0pln (b0=d)"0(Tf ): (92)Unfortunately, this temperature is loated very loseto T, where we annot use the approximations un-derlying Eq. (59), e. g., neglet thermal ativation of4) As in most theoretial papers, the temperature is measuredin energy units.

kinks and antikinks. We an onlude that the modelof planar �utuations given by elasti energy (59) is notsu�ient to desribe the melting of the Josephson vor-tex lattie [65℄. The temperature sale in (92) is muhhigher than the orresponding temperature sale forthe panake vortex lattie [19℄, meaning that thermal-�utuation e�ets for the Josephson vortex lattie aremuh weaker than for the panake vortex lattie.We an estimate the typial temperature abovewhih kink formation strongly in�uenes the �utua-tion displaements of the vortex lines. In an isolatedline, the typial distane between thermally exitedkinks is given byLkink = �kink exp(Ekink=T ); (93)where Ekink � d"0 ln(d=�ab) is the kink energy. Usu-ally, it is assumed that the preexponential fator �kinkis of the order of the in-plane oherene length �ab [72℄.Analysis of �utuations of the order parameter nearthe ore [77℄ gives a somewhat more aurate estimate�kink � �abpT=d"0. Typial kx ontributing to �utu-ation displaement (89) an be estimated as kx � �=b0.Therefore, the kinks start to ontribute to thermal wan-dering if Lkink < b0. This gives an estimate for thetypial temperatureTkink = Ekink= ln(b0=�kink): (94)In the limit  > �ab=d, we obtainTkink = d"0(Tkink) ln(d=�ab)ln(b0=�kink) : (95)It follows that even though this temperature is smallerthen Tf in (92), it is also loated lose to the �utu-ation region near T and very slowly dereases withinreasing the magneti �eld.The model of planar �utuation belongs to the uni-versality lass of the three-dimensional XY model, andhene the phase transition desribed by this model hasto be ontinuous. In spite of the insu�ieny of thismodel, this suggests that the melting transition for themagneti �eld applied along the layers may beomeontinuous for su�iently high anisotropy. It was in-deed observed experimentally in [78℄ and in [30℄ thatthe melting transition in YBCO beomes ontinuouswhen the magneti �eld is aligned with the layers. Con-tinuous melting of the Josephson vortex lattie also hasbeen observed in numerial simulations in [75℄. Thesimulation parameters in this work, however, orre-spond to the regime of dense lattie, whih is onsideredbelow.541
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Crystal Smectic Liquid

Fig. 17. Possible phases for the �eld applied along thelayers. Grey level illustrates the average vortex den-sity. In the intermediate smeti phase suggested inRef. [72℄, density is modulated only in the diretionperpendiular to the layersA desription of the �utuating Josephson vortiestaking kink�antikink formation into aount is muhmore ompliated problem and possibilities for ana-lyti progress are quite limited. General senarios ofJosephson-vortex-lattie melting have been disussedin [72℄. It was argued there that an aligned lattie maymelt via an intermediate smeti phase, in whih theaverage vortex density is modulated only in the dire-tion perpendiular to the layers but no order is pre-served in the diretion of the layers, as illustrated inFig. 17. The density modulation period has to be equalto the integer number of layers. The developed Landautheory of the liquid-to-smeti transition suggests thatthis transition has to be of the seond order. Stati anddynami properties of the intermediate smeti phasehave been desribed in detail. In partiular, it was ar-gued in [75℄ that this phase is haraterized by a �nitebut very large tilt modulus, orresponding to a verysmall transversal suseptibility �z = Bz=Hz, and byvery small in-plane resistivity. Both these propertiesappear due to the thermally ativated �superkink� ex-itations, in whih one vortex is moved aross the layersby one smeti period. While the density modulationremains stati and oriented parallel to the layers, theseexitations may failitate tilting of the magneti indu-tion with respet to the layers and �ux motion in thez-axis diretion. In spite of its physial appeal, thetheory in [72℄ is not quantitative. It does not preditloations of the transitions in the �eld�temperatureplane, their thermodynami signatures, and the widthof the intermediate-phase region. The very existene ofthe intermediate smeti phase has been not rigorouslyproven. Alternatively, the rystal may melt diretlyinto the liquid via a �rst-order phase transition.A more quantitative study based on the density-funtional theory was performed in [74℄. The intrinsipinning potential in this study was modeled by the o-sine funtion and its strength was used as an adjustingparameter. It was found that the smeti phase ex-ists for a su�iently strong periodi potential only for

one type of aligned lattie, whih in our notation or-responds to (m;n) = (1; 0), and with one empty layerbetween the layers �lled with Josephson vorties, i. e.,with N = 2. Aording to the analysis in Se. 4.2, suha lattie is realized in the ground state within the �eldinterval [0:8 � 0:98℄�0=(2�d2). The melting senariovia the intermediate smeti phase is most probable inthis �eld range.6.2. Elimination of the lattie rotationaldegeneray by thermal �utuationsThe dilute lattie at small �elds is approximatelydegenerate with respet to ellipti rotations, as was dis-ussed in Se. 4. This degeneray is partially eliminatedby the intrinsi pinning potential and by the orretionsto the intervortex interations due to the disretenessof the layered struture. The latter e�et beomes no-tieable only at high magneti �elds approahing therossover �eld. Beause the Josephson vorties mainly�utuate along the layer diretion, the �utuation or-retion to the free energy depends on the lattie ori-entation with respet to the layers and also eliminatesthe ellipti degeneray. Therefore, the Josephson vor-tex lattie at small �elds gives a physial realization ofa system in whih the ground state is highly degenerateat zero temperature and this degeneray is eliminatedby thermal �utuations. Similar behavior is realized insome frustrated magnetis and is known as �order as ane�et of disorder� [79℄. As a natural way to prepare theground state is to ool system in �xed �eld, it is impor-tant to understand how the ground-state on�gurationevolves with the temperature.In this setion, we onsider the orientation-depen-dent entropy orretion to the free energy. This allowsus to trae evolution of the ground-state on�gurationswith inreasing �eld at �nite temperature. Qualita-tively, �utuations favor soft latties, with smaller elas-ti onstants. We an then expet that the entropy or-retion favors the aligned lattie (1; 0), beause for thislattie the shear deformations our along the losed-paked diretion.The orientation-dependent entropy orretion is de-termined by the short-wavelength lattie deformations,and the long-wavelength elasti approximation in theprevious setion is not su�ient. The elasti energyfor planar deformations in the whole Brillouin zone isgiven by Fel = Z d3k(2�)3 �JV L(k)2 ju(k)j2 (96)with542



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutors�JV L(k) = B2x4� ��XQ  (ky �Qy)2 + k2x1+�2ab(kz�Qz)2+�2(ky�Qy)2 + �2k2x �� Q2y1 + �2abQ2z + �2Q2y! ; (97)where Q = (Qy; Qz) are the reiproal-lattie vetors.The �utuation orretion to the free energy is givenby ÆfT = �T2 1Z�1 dkx2� ZBZ dkydkz(2�)2 ln C�JV L(k) : (98)Calulation of this orretion is desribed in detail inAppendix C. Combining the result of this alulationwith the London-limit presentation of the lattie in-teration energy (48), we represent the orientation-dependent part of the total free energy at �nite tem-perature in the formÆfa = Bx�0 "0  GL � T"0rBx��0 ga! : (99)The numerially omputed orientation-dependent or-retion ga(�; h) in the range 0:001 < h < 0:1 is welldesribed by ga(�; h) � g6(h) os(6�)withg6(h) � 0:01pln(514=h) : (100)The �utuations give the largest negative ontributionat � = 0, meaning that they indeed favor the alignedlattie (1,0).We ompare the orientation-dependent entropy or-retion with the orretion due to the layered strutureonsidered in Se. 4.2. We an see that these orre-tions ompete: the �rst one favors the (1; 0) orientationwhile the seond one favors the (1,1) orientation. Theentropy orretion deays with dereasing �elds aspBxand at small �elds always exeeds the �layeredness� or-retion, whih deays as B2x. We estimate that the �lay-eredness� orretion exeeds the �utuation orretionwhen Bx exeeds the temperature-dependent �eld saleBx;T = �02�d2 " T=d"0pln(CT d"0=T )#2=3with CT � 2:6 � 104.

6.3. Flutuations and melting of the denseJosephson vortex lattieUsing elasti energy (74), we an evaluate the mean-squared �utuation of the in-plane phase
�2n� � 
v2n� = dTE0 Z d2kk(2�)2 �=dZ��=d dkz2� 1k2k+ 8(�Jh)2 s4zwith sz(kz) = sin(kzd=2) and the lattie displaementun = ��J (vn+1 � vn) =h:
u2� = dT�2JE0 Z d2kk(2�)2 �=dZ��=d dkz2� 4s2zk2k + 8(�Jh)2 s4z :Renormalization of the e�etive oupling is determinedby the averageD(vn�1 + vn+1 � 2vn)2E == dTE0 Z d2kk(2�)2 �=dZ��=d dkz2� 16s4zk2k + 8(�Jh)2 s4z :All above integrals diverge logarithmially at large kk.This divergene has to be ut o� at kk � 1=�ab. Asusual for quasi-two-dimensional systems, the weak in-terlayer oupling uts o� the logarithmi divergene atsmall kk. Evaluating the integrals, we obtain
�2n� � T2�E0 ln��Jh�ab � ; 
u2� � T�2J�h2E0 ln��Jh�ab � ;D(vn�1 + vn+1 � 2vn)2E � 6 
�2n� � 3T�E0 ln��Jh�ab � :Flutuations beome strong and the harmoni approx-imation breaks down when D(vn�1 + vn+1 � 2vn)2E �� 1, orresponding to 
�2n� � 1=6 and 
u2� � a2=3with a = �J=h being the in-plane lattie onstant. Thisgives the temperature saleTf = E0(Tf )ln (�Jh=�ab) = "0(Tf )d� ln (�Jh=�ab) : (101)As E0(0) � T (typially, for BSCCO, E0(0) �� 250�300K), this temperature sale usually orre-sponds to temperatures lose to T. It is somewhatlower than the orresponding temperature sale (92)for the dilute lattie and even smaller than tempera-ture sale (95) for kink formation in the dilute lattie.543



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013We next disuss the melting transition of the denselattie based on the energy (72) desribing weakly ou-pled two-dimensional systems. Behavior of suh asystem has to be similar to that of the layered XYmodel [80℄ and a layered superondutor in zero mag-neti �eld [81℄. In the ordered phase of suh systems,below the Berezinskii�Kosterlitz�Thouless temperaturefor a single layer, a weak interlayer oupling is alwaysrelevant, annot be treated as a small perturbation,and restores three-dimensional long-range order. Thetransition in suh systems is expeted to be ontinuousand to our slightly above the Berezinskii�Kosterlitz�Thouless transition of an isolated layer that ours atthe temperature TKT = �E0(TKT )=2. This is in spiteof the fat that the interplane �utuations atually be-ome strong at the temperature (101), whih is signi�-antly smaller than the transition temperature TKT inan isolated layer.The melting transition of the dense lattie wasstudied numerially in [75℄ using the frustrated XYmodel. The authors laimed that the melting tran-sition is ontinuous at high �eld and hanges to a�rst-order transitions when the �eld drops below B == �0=2p3d2 � 1:8�0=2�d2. It is not lear how uni-versal this �eld is. In priniple, it may be sensitive tothe kink energy, whih depends on the ratio d=�ab.Experimentally, an indiation of the melting tran-sition in the dense-lattie regime was found in small-size BSCCO mesas in [46℄, where the temperature de-pendene of magneti osillations disussed in Se. 5.4was explored. It was found that in the �eld range0.6�0.8 tesla, the magneti osillations of the �ux-�owvoltage rapidly derease with inreasing temperatureand are ompletely suppressed by thermal �utuationsat temperatures � 4 K below the transition tempera-ture. 7. SUMMARYIn this review, we onsidered in detail the statiproperties of the Josephson vortex lattie followingfrom the Lawrene�Doniah model in the Londonapproximation, whih mostly desribes properties ofsuperondutors in terms of the distribution of theorder-parameter phase. We reviewed the propertiesof an isolated vortex as well as the struture andenergetis of the vortex lattie in both dilute anddense regimes. In addition to standard properties, ouronsideration inludes quite subtle nontrivial e�ets,suh as the in�uene of thermal �utuations on theorientation of the vortex lattie. We did not touh on

dynami properties of the lattie, whih have beamea separate large �eld.A. E. K would like to thank L. N. Bulaevskii,M. Tahiki, and X. Hu for many useful disussionsof theoretial issues and Yu. I. Latyshev, I. Kakeya,T. Hatano, S. Bending, V. K. Vlasko-Vlasov, A. Tono-mura, and A. A. Zhukov for the disussions of rel-evant experimental data. A. E. K. is supported byUChiago Argonne, LLC, operator of Argonne NationalLaboratory, a U.S. Department of Energy O�e of Si-ene laboratory, operated under ontrat �DE-AC02-06CH11357. APPENDIX ACalulation of the nonloal line-tension energyof a single lineFor deformations with wave vetors jkxj � 1=�,sreening e�ets an be negleted and the energyvariation is determined by the phase part of en-ergy, whih we write using saled in-plane oordinates(�x; �y) = (x=d; y=d) asÆF � E0Xn Z d�x Z d�y �� �12 �rk�n�2 � os (�n+1 � �n) �� 12 �r�y�(0)n �2 + os��(0)n+1 � �(0)n �� ; (A.1)where �(0)n (�y) is the straight-vortex solution. The phaseof the deformed vortex obeys the equationr2k�n + sin (�n+1 � �n)� sin (�n � �n�1) = 0 (A.2)with the ondition �1(�x; �u(�x))� �0(�x; �u(�x)) = � de�n-ing the vortex ore and �u(�x) = u(x)=d. In the elastilimit jdu=dxj � 1, at distanes smaller than the typialwavelength of deformation, the phase an be approxi-mately represented as�n(�x; �y) � �(0)n [�y � �u(�x)℄ :On the other hand, at large distanes, we an use theLondon approximation in Eq. (A.2) and �nd the phaseusing the Fourier transformation. This gives the phaseperturbation �(1)(�k) = �(�k)� �(0)(�k) in the form�(1)(�k) � 2�i�kz�u(�kx)�k2 ; (A.3)544



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorswhere (�kx; �ky; �kz) = (dkx; dky; dkz) and �k2 = �k2x ++ �k2y + �k2z . We use this result in a mixed (�kx; �y; �z)-re-presentation, whih is obtained by the inverse Fouriertransform of the above equations with respet to �yand �z, �(1)(�r; �kx) � �u(�kx)r�zK0(�kx�r) (A.4)with �r = (�y; �z).We split the total energy loss given by Eq. (A.1) intothe x-gradient and transverse parts, ÆF = Fx + Fzy .The x-gradient part,Fx = E02 Xn Z d�x Z d�y (r�x�n)2 ;an be omputed by introduing an intermediate sale1� R� 1=�kx that splits the integral into the two on-tributions, from small and large distanes. The ontri-bution from �r = p�y2 + �z2 < R with �z = n � 1=2 isgiven byFx;< � E02 Z d�x�dud�x�2Xn ynZ�yn d�y �r�y�(0)n �2 ;where yn =pR2 � (n� 1=2)2. The quantityXn ynZ�yn d�y �r�y�(0)n �2 � �2 (lnR + Cy)is determined by the exat phase distribution in theore. Using the aurate numerial solution, we esti-mate Cy � 0:93. The ontribution from the regionr > R is omputed using Eq. (A.4),Fx;> � E02 Z d�x Z�r>R d2�r (r�x�n)2 == E02 Z d�kx2� �k2xj�u(�kx)j2 Z�r>R d2�r �r�zK0(�kx�r)�2 :Computing the integralZ�r>R d2�r �r�zK0(�kx�r)�2 � ��ln 2�kx �R � E � 12� ;where E � 0:5772 is the Euler onstant, we obtainFx;> � �2E0 Z d�kx2� �k2x�ln 2�kx �R � E � 12� j�u(�kx)j2:Combining the parts Fx;< and Fx;>, we obtainFx = �2E0 Z d�kx2� �k2x�ln 2�kx � E � 12 + Cy��� j�u(�kx)j2: (A.5)

In the transverse partFxy � E0Xn Z d�x Z d�y �� �12 (r�y�n)2 � os (�n+1 � �n) �� 12 �r�y�(0)n �2 + os��(0)n+1 � �(0)n �� ;we replae �(0)n (�y; �z) with �(0)n (�y � �u(�x); �z) and repre-sent �n(�x; �y) as �n(�x; �y) = �(0)n (�y � �u(�x)) + ~�n(�x; �y),where the Fourier transform of ~�n(�x; �y) at small wavevetors is given by~�(�k) = 2�i 1�k2 � 1�k2y + �k2z! �kz�u(�kx) == � 2�i�k2x��k2y + �k2z� �k2 �kz�u(�kx):We see in what follows that the main ontribution toFxy omes from the distanes of the order of a typi-al wavelength of deformations far away from the ore.Therefore, we an expand with respet to ~�n and anuse the linear and ontinuous approximationFyz � E02 Z d3�k(2�)3 ��k2y + �k2z� j~�(�k)j2:Substituting ~�(�k) and omputing the integral with re-spet to �ky and �kz , whih onverges at �ky, �kz � �kx, weobtain Fyz � �4E0 Z d�kx2� �k2xj�u(�kx)j2: (A.6)Finally, ombining (A.5) and (A.6), we obtain the line-tension energy of the Josephson vortex in (31), pre-sented already in the real oordinates with the numer-ial onstant Ct = 2 exp(�E + Cy).APPENDIX BDisrete and nonlinear orretions to theJosephson vortex phase and energy at largedistanes from the oreThe phase distribution �n(y) in the Josephson vor-tex ore obeys Eq. (20). We measure the in-plane o-ordinate y in units of the Josephson length �J = dde�ning the dimensionless oordinate �y = y=d andrewrite (20) in the formd2�nd�y2 + sin [�n+1 (�y)� �n (�y)℄ ++ sin [�n�1 (�y)� �n (�y)℄ = 0:7 ÆÝÒÔ, âûï. 3 (9) 545



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013At large distanes from the ore, n2 + �y2 � 1, thisequation transforms into the isotropi London equationr2� = 0. In this region, �n (�y) an be approximatedby a ontinuous funtion � (�y; �z) with n! �z. Using theTaylor series for the di�erene � (�y; �z + 1)�� (�y; �z), weobtainsin [� (�y; �z + 1)� � (�y; �z)℄ ++ sin [� (�y; �z � 1)� � (�y; �z)℄ �� �2���z2 + 112 �4���z4 � 12 �����z�2 �2���z2 + : : :Therefore, the phase equation to 4th order in the gra-dient (whih is small at large distanes) is given by�2���y2 + �2���z2 + 112 �4���z4 � 12 �����z�2 �2���z2 = 0: (B.1)This equation an be solved iteratively. For the Joseph-son vortex loated at �y = 0 in between the layers0 and 1, the zeroth-order solution �0 (orret to theseond order in the gradients) is given by �0(�y; �z) == � artg[(�z � 1=2)=�y℄ (we note that for �z = n, wehave �0(y=d; n) = �Jvn (y) in (21)). The �rst-orderorretion Æ�1(�y; �z) obeys the equationr2Æ�1 = � 112 �4�0��z4 + 12 ���0��z �2 �2�0��z2 == 2 sin(2�0) + 5 sin(4�0)8 �r4 ;where �r2 = �y2 + (�z � 1=2)2. Using the solutions of theinhomogeneous Laplae equationsr2� = sin 2�0�r4 ! � = � sin 2�04�r2 ln �r;r2� = sin 4�0�r4 ! � = � sin 4�012�r2 ;we build the solution for Æ�1 ��r; �0� and arrive at theorretionÆ� (�y; �z) = sin(2�0)16 �r2 (ln �r + CÆ�) ++ 5 sin(4�0)96 �r2 +O(1=�r4): (B.2)Here, we have added the solution sin(2�0)=�r2 of thehomogeneous Laplae equation with an unknown nu-merial onstant CÆ�. Comparison of these asymp-toti expressions with the full numerial solution givesCÆ� � 4:362. The result in (B.2) is given in unsaledoordinates in (28).

In a similar way, we an derive a nonlinear/disreteorretion to the energy far away from the ore. Theredued energy ontribution to the Josephson vortexfrom the region �r < �ab=d is given by"Jv = Z d�yXn "12 �d�nd�y �2 + 1� os (�n+1 � �n)# :In the region �r � 1, we an again use the expansionwith respet to a small gradient along the z axis, whihleads to the result"Jv � Z1��r��ab=d d2�r"12 �d�d�y�2 + 12 �����z�2 �� 124 ��2���z2�2 � 124 �����z�4# :In the lowest order with respet to small gradients, thisgives the orretion to the energy due to the layeredstrutureÆ"Jv = � 124 �� Z1��r��ab=d d2�r"��2�0��z2 �2 +���0��z �4# : (B.3)In the ase of a single Josephson vortex, this formulais not very useful beause the integral is formally di-vergent at small distanes and is determined by thesmall-distane ut-o�. In the ase of a �nite vortex den-sity, however, a generalization of this equation allowsobtaining a nontrivial orretion to the vortex-lattieenergy.In the vortex-lattie ase at a �nite in-plane �eld,following the same reasoning, we obtain the orretionto the redued energy per unit ell in (56):Æu = 1� Zu:: d2�r�� "� 124 ��2�0��z2 �2 � 124 ���0��z + h�y�4# ; (B.4)where integration is performed over the unit ell and�0(�r) is the vortex-lattie phase within the London ap-proximation. To estimate the dominating ontribution,we use the irular-ell approximation for the lattiephase. In this approximation, superurrents �ow radi-ally within the ell �r < a = p2=h and vanish at itsboundary, and hene the gauge-invariant phase gradi-ent is given by1�r ���� = �1�r + �ra2 for 0 < r < a;546



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorswhere � = tg�1(�z=�y) is the polar angle, whene��0=��z + h�y ! � os(�)(1=r � r=a2). The integralformally diverges at small distanes. This divergene,however, is due to the vortex-ore energy. To �nd thenontrivial orretion to the lattie energy, we subtratthe diverging single-vortex term. The dominating on-tribution to the rest part omes from the seond (non-linear) termÆu � � 124� 2�Z0 d��� aZ0 �r d�r os4(�)"�1�r � �ra2�4 � 1�r4 # ; (B.5)and alulation gives the resultÆu = h32 ln Chh : (B.6)From the �t of the numerially omputed energy to thisformula, we obtain the numerial onstant Ch � 110.We note that this orretion does not depend on the lat-tie orientation with respet to the layers. Interationwith the layers also eliminates the �ellipti� rotation de-generay of the lattie desribed in Se. 4. Expansion(B.5), however, is not su�ient to �nd the orientation-dependent orretion to the energy. To obtain thatorretion, one has to obtain the next-order expansionwith respet to the gradients (6-th order terms).APPENDIX CCalulation of the orientation-dependent�utuation orretion to the free energyIn this appendix, we present the alulation of theentropy orretion to free energy (98) based on the pla-nar elasti energy (96). To failitate alulations, weagain introdue the redued wave vetors ~k de�ned inEq. (90) and the orresponding reiproal-lattie ve-tors ~Q = ( ~Qy; ~Qz). In this presentation, the reiproallattie beomes a regular triangular lattie with theunit vetor Q0 =q2�=p3 and the area of the Bravaisell is equal to �. Using the new variables, we represent�JV L(k) in the ompat redued form as�JV L(k) = B2x4��2 �JV L(~k); (C.1)�JV L(~k) ==X~Q 264 �~ky � ~Qy�2 + ~k2xb�1x + �~kyz � ~Q�2 + ~k2x � ~Q2yb�1x + ~Q2375 ; (C.2)

a0 b � b
L2

L1 G2Q0k2 k1 n� kz kyG1aa
Fig. 18. a) Josephson vortex lattie in redued oor-dinates rotated at a �nite angle � with respet to thelayers in real spae suh that the layers align with therystallographi diretion (3; 1). b ) The orrespondingreiproal lattie and illustration of two seletions forthe basis used in the alulation of the entropy or-retion: the basi wave vetors G1;2 aligned with thelattie, and the basi wave vetors L1;2 aligned withthe layerswhere bx = 4��ab�Bx=�0 = 2 (�ab=d)2 h � 1 and~kyz = (0; ~ky;~kz).We assume that the lattie is rotated at a �niteangle � with respet to the layers seleted in suh away that the layers are aligned with one of the rys-tallographi diretions, as skethed in Fig. 18. Thismeans that the lattie, in general, has the form of amisaligned lattie skethed in Fig. 6a and is harater-ized by the aspet ratio r = b=a and the shift param-eter, q. To ompute the sum over the reiproal-lattievetors, we use two equivalent parameterizations illus-trated in Fig. 18. The �rst parameterization uses anexpansion over the two basi vetor of the tilted lattie,~Q = nG1 + mG2 with m;n = 0;�1;�2 : : : For suhan expansion, we an simply represent the omponentof ~Q along the two main diretions of the tilted lattie,(k1, k2), shown in Fig. 18,~Q1 = p32 mQ0; ~Q2 = �n+ m2 �Q0: (C.3)This gives ~Q2 = �n2 + nm+m2�Q20. The (y; z) om-ponents of the wave vetors are related to the (1; 2)omponents by axis rotation. For example, for the om-ponent ~ky in Eq. (C.2), we have ~ky = os �~k1 + sin �~k2.This parameterization allows us to naturally trae thedependene on the rotation angle �. The seond pa-rameterization utilizes the basi wave vetors alignedwith the layers,~Q = nL1 +mL2;L1 = �0;r�r � ; L2 = �p�r;�qr�r � : (C.4)547 7*



A. E. Koshelev, M. J. W. Dodgson ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013This basis allows easily traing the dependene on thelattie-struture parameters r and q. It also allows re-duing �JV L(~k) to a simpler form. Substituting pre- sentation (C.4) in Eq. (C.2) and taking the sum overn, we obtain
�JV L(~k) = p�r 1Xm=�10B��~ky �mp�r�2 + ~k2x�(~ky �mp�r; ~kx) �� sh h2p�r�(~ky�mp�r; ~kx)ih h2p�r�(~ky�mp�r; ~kx)i� os h2� �qm+~kzp r��i �� �rm2�(mp�r; 0) sh [2p�r�(mp�r; 0)℄h [2p�r�(mp�r; 0)℄� os(2�qm)�with �(ky; kx) � qb�1x + k2y + k2x. This formula on-tains only one summation, whih makes it onvenientfor numerial evaluations. On the other hand, the de-pendene on the rotation angle here is not obvious andis hidden in the dependene on the parameters r and q.The sums over the reiproal-lattie vetors inEqs. (97) and (C.2) formally diverge logarithmiallyat large Q ( ~Q). Correspondingly, the sum over m inEq. (C.5) also logarithmially diverges. This divergeneis due to the single-vortex tilt energy and has to be utat the ore size, Qy � 1=d. This energy was onsid-ered in details in Se. 3.1. We split the redued elastimatrix �JV L(~k) into the single-vortex, �sv(~kx), and in-teration, �i(~k), terms,�JV L(~k) = �sv(~kx) + �i(~k):The single-vortex term �sv(~kx) an be obtained fromEq. (C.2) by replaing the summation over ~Q with in-tegration,

�sv(~kx) = Z d2 ~Q� " ~Q2y + ~k2xb�1x + ~Q2 + ~k2x � ~Q2yb�1x + ~Q2# :Using Eq. (31), we obtain the line-tension term inreal units, �sv(kx) = �(Bx=�0)"Jk2x ln(Ct=dkx) with"J � E0=d and Ct � 2:86. This orresponds tothe following result for the redued line-tension term�sv(~kx) = �4��2=B2x��sv(kx):�sv(~kx) � ~k2x2 ln 4:09h~k2x (C.5)for ~k2x � 4=h. In the interation term �i(~k) == �JV L(~k) � �sv(~kx), the logarithmi divergene isompensated and the sum over ~Q onverges roughly at~Q � 1. In partiular, using the presentation in (C.5),the interation term an be represented as a onvergingsum,
�i(k) = p�r 1Xm=�10B��~ky �mp�r�2 + ~k2x�(~ky �mp�r; ~kx) sh h2p�r�(~ky �mp�r; ~kx)ihh2p�r�(~ky �mp�r; ~kx)i� osh2� �qm+ ~kzp r��i �� XÆ=�1 Æ U h~kx; (m+ Æ=2)p�r � ~kyi �� �rm2�(mp�r; 0) sh [2p�r�(mp�r; 0)℄h[2p�r�(mp�r; 0)℄� os(2�qm) + XÆ=�1 Æ U�0; (m+ Æ=2)p�r�!with 548



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Josephson vortex lattie in layered superondutorsU [kx; ky℄ � 12 �kyqb�1x + k2x + k2y ++ ��b�1x + k2x� ln�ky +qb�1x + k2x + k2y �� :Here, the terms with U [: : : ; : : : ℄ originate from thesingle-vortex ontribution �sv(~kx), whih is properlydeomposed to ompensate the summation divergene.In spite of its sary look, this formula is the most suit-able one for numerial alulations.From Eq. (98), we obtain the entropy orretion tothe free energy in redued formÆfT = � T2p �4�Bx�0 �3=2 �� 1Z�1 d~kx2� ZBZ d~kyd~kz(2�)2 ln ~C�JV L(~k) ; (C.6)where RBZ : : : denotes the integral over the Brillouinzone and ~C is a dimensionless onstant. The inte-gral over kx is formally diverging. This divergeneis due to short-wavelength exitations in the vortexores and does not ontribute to the angular-dependentorretion. To separate the regular anisotropi orre-tion, we subtrat the isotropi single-vortex ontribu-tion from the total free energy and represent the result-ing anisotropi orretion asÆfT;a(�) = � Tp� �Bx�0�3=2 ga (C.7)withga = ZBZ d2~kyz� 1Z0 dkx ln �sv(~kx)�sv(~kx) + �i(~k) : (C.8)This presentation is used in Eq. (99).The large logarithmi fator in �sv(~kx) in Eq. (C.5)allows obtaining a useful approximate formula for ga.As �i(~k) � 1, the integral over ~kx onverges at~kx � 1=pln(1=h)� 1, meaning that for a log-aurayestimate, we an neglet the ~kx-dependene of �i(~k).Evaluating the integral over kx, we obtainga � � p2pln(A=h) ZBZ d2~kyzq�i(~kyz) (C.9)with A � 1. If we neglet the small parameter b�1xin �i(~kyz), then the integral in this formula beomes�eld independent and the only �eld dependene of gafor h! 0 is given by the fator [ln(A=h)℄�1=2.

�0:9637++0:00302 os(6�)h = 0:0067(1; 0)(5; 1)(4; 1)(3; 1)(2; 1) (1; 1)0 0:1 0:2 0:3 0:4 0:5��0:966�0:964�0:962�0:960ga

0:01 0:1h�-presentation(r; q)-presentation0:00290:00300:00310:00320:00330:00340:0035g6

Fig. 19. The inset shows an example of the numeriallyomputed angular dependene of the redued entropyorretion ga(�) de�ned by Eq. (C.8) for h = 0:0067.Solid squares show results obtained using the represen-tation for �xed lattie parameters r and q in Eq. (C.6).This omputation is done for layers oriented along therystal diretions (m;n), whih are also shown in theplot. Open symbols are obtained using the representa-tion with the expliit dependene on the lattie rotationangle � using expansion (C.3). The dashed line is the�t to the formula g0+g6 os(6�). The main plot showsthe �eld dependene of the oe�ient g6 and the or-responding �t in Eq. (100)We numerially omputed the redued entropy or-retion ga for di�erent lattie orientations and redued�elds h. An example of the angular dependene ofga for h = 0:0067 is shown in the inset of Fig. 19.We found that in the range 0:001 < h < 0:1, theorientation-dependent part of ga an be well �tted byformula (100). The dependene g6(h) is plotted inFig. 19. The positive sign of g6(h) means that the �u-tuations give the largest negative ontribution at � = 0,i. e., they indeed favor the aligned lattie (1,0). We alsoan see that the e�et ours to be quantitatively rathersmall, at least in the onsidered Gaussian-�utuationregime. REFERENCES1. B. D. Josephson, Phys. Lett. 1, 251 (1962).2. J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189(1986).549
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