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Using mesa array fabricated at the top of Bi2Sr2CaCu2O8 single crystal was demonstrated recently as a
promising route to enhance the radiation power generated by the Josephson oscillations in mesas. We
study the synchronization in such an array via the plasma waves in the base crystal. First, we analyze
plasma oscillations inside the base crystal generated by the synchronized mesa array and the associated
dissipation. We then solve the dynamic equation for the superconducting phase numerically to find con-
ditions for synchronization and to check the stability of the synchronized state. We find that the mesas
are synchronized when the cavity resonance of mesas matches with that of the base crystal. An optimal
configuration of the mesa arrays is also obtained.
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1. Introduction

Soon after the discovery of Josephson Effects, it was realized
that Josephson junction can be used to generate electromagnetic
waves. When the junction is biased in voltage state with voltage
V, the two superconducting electrodes have energy difference
2 eV. The system is similar to two-energy level system in atomic
physics. When Cooper pairs tunnel from the electrode with higher
energy to that with lower energy, a photon with angular frequency
x = 2 eV/⁄is emitted. The frequency can be tuned by voltage and
1 mV corresponds to 0.483 THz. The radiation power from one
junction however is weak, of the order of 1 pW [1–3]. Arrays of
Josephson junctions are fabricated to enhance the radiation power
[4–8]. Once these junctions are synchronized, the total radiation
power is proportional to the number of junctions squared.

A stack of Josephson junctions is naturally realized in some lay-
ered cuprate superconductor [9], such as Bi2Sr2CaCu2O8+d (BSCCO).
Because of the large superconducting energy gap (up to 60 meV),
these build-in intrinsic Josephson junctions (IJJs) may have Joseph-
son oscillations with frequencies in the terahertz (THz) band. IJJs
are packed on nanometer scale, much smaller than the THz electro-
magnetic (EM) wavelength, and are homogeneous. The THz gener-
ator based on IJJs thus is promising to fill the THz gap [10,11].
Many efforts have been made in the last decade to excite the
coherent THz radiation experimentally [12–15]. On the theoretical
side, numerical simulations and analytical calculations have been
performed to understand the mechanism of radiation [16–26].
Coherent radiation from a mesa structure of BSCCO in the ab-
sence of external magnetic fields was observed experimentally in
2007 [27], which renewed the interest in this field. It was found
that the mesa itself forms a cavity to synchronize the radiation in
different layers, as evidenced from the dependence of the radiation
frequency f on the lateral size L of the mesa, f = c0/(2L) with
c0 ¼ c=

ffiffiffiffiffi
�c
p

the Josephson plasma velocity where �c is the dielectric
constant of BSCCO. The cavity resonance mechanism has been
confirmed by many independent experiments [28–32] and the
radiation power is enhanced to about 30 lW [33]. A dynamic state
with the p phase kink was proposed to account for the experimen-
tal observations [34,35]. It was suggested that the strong in-plane
dissipation is responsible for the c-axis uniform excitation of the
cavity mode [36].

From application perspective, the radiation power in the
present experimental design is still too weak to be practically
useful. A natural way to enhance the radiation power by using
thicker mesas has several challenges. First, for a thick mesa it be-
comes difficult to cool the system efficiently. The dissipation and
hence self-heating increase with the volume of the mesa, while
the heat removal rate remains the same because the heat is mainly
removed through the substrate. It has already shown experimen-
tally that even for a mesa with thickness of �2 lm, central part
of the mesa is driven to the normal state by the severe self-heating
[29,30]. Secondly, it was calculated that for a tall mesa a long-range
instability destroying the in-phase plasma oscillations develops
[37], and only parts of the mesa can be synchronized [36].

To enhance the radiation power while minimizing the self-heat-
ing, one may use multiple thin mesas on top of the same BSCCO
single crystal. The multiple mesa structures have been fabricated
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recently and it was demonstrated that the radiation power is en-
hanced under appropriate conditions [38,39]. The mechanism of
synchronization among mesas is not known. There are two sources
of interaction. The mesas interact through the radiation fields. They
also interact through the plasma oscillations excited in the base
crystal. The resonance damping due to the leaking of radiation
from the mesa into the base crystal has been considered in Ref.
[40] and it was demonstrated that this channel gives the main con-
tribution to the dissipation. Therefore, synchronization mediated
by the radiation fields inside the crystal is probably a dominating
mechanism. The present work is devoted to understanding the
synchronization of multiple mesas through the plasma oscillations
in the base crystal and to finding an optimal configuration for
synchronization.

2. Model

We consider arrays of identical mesas with the period a atop of
a BSCCO single crystal as schematically shown in Fig. 1. Every mesa
contains Nm junctions and has width L while the base crystal con-
tains Nc junctions. No external magnetic field is applied. Each mesa
is biased independently by a dc current injected from the top of the
mesa and extracted from the top surface of crystal. In this case, the
junctions in the basal crystal remain in the zero-voltage state, and
the mesas are driven into resistive state. The system is assumed to
be uniform along the y direction and the problem becomes two
dimensional. The dynamics of the gauge-invariant phase difference
hn and magnetic field hn in the n-th junction are described by [41–
45]

@2hn

@s2 þ mc
@hn

@s þ sin hn � ‘2 @hn

@x
¼ 0 ð1Þ

‘2r2
n � 1

� �
hn þ

@hn

@x
þ mab

@

@s
@hn

@x
� hn

� �
¼ 0 ð2Þ

where r2
nfn � fnþ1 þ fn�1 � 2f n is the finite difference operator. Here

the time and coordinate are measured in units of the inverse
Josephson plasma frequency 1/xp and the Josephson length kJ = cs
correspondingly and the unit of magnetic field is U0/(2pcs2), where
c is the anisotropy factor and s is the interlayer spacing. Here
xp ¼ c=ðkc

ffiffiffiffiffi
�c
p
Þ and U0 = hc/(2e) is the flux quantum. These reduced

equations depend on three parameters, mc = 4prc/(ecxp),mab = 4p
rab/(ecxpc2), and ‘ = kab/s, where rc and rab are the quasiparticle
conductivity, and kc and kab are the London penetration depth along
the c-axis and ab-plane respectively. The dimensionless electric
field in units of U0xp/(2pcs) is given by Ez,n = @thn.
Fig. 1. Schematic view of multiple mesas atop of a BSCCO crystal. The mesas are
biased independently. The BSCCO sample (blue) is sandwiched by gold electrodes
(orange). In the analytical treatment, we consider an array of identical mesas with
width L and period a. The top surface of the base crystal is free. In the simulation
part, we consider two identical mesas with width L separated by a distance Lm. The
mesas are located at the position L away from the edges of the base crystal. The top
surface of the base crystal is also covered by gold electrodes through which the
current is extracted. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
For the mesa with thickness of 1 lm which is much smaller
than the wave length of THz EM wave in vacuum, there is a
significant impedance mismatch between the mesa and vacuum
[46]. Most part of energy is reflected at the edges of mesa and cav-
ity resonance is achieved. We can use the boundary condition that
the oscillating magnetic field vanishes at the edges. The boundary
condition at the edges of the mesas is @xhn = ±L Il/2, and the bound-
ary condition at the edges of the base crystal is @x hn = 0, where Il is
the bias current in the l-th mesa. We assume that the contact
material can be approximated by an ideal conductor so that the
tangential oscillating current vanishes at the conductor surface
corresponding to the boundary condition @zh(z) = 0 in the contin-
uum limit.

3. Plasma oscillations excited in the base crystal in the
synchronized state

In this section, we calculate the plasma oscillations in the syn-
chronized state assuming that the array contains large number of
mesas so that it can be treated as an infinite system. The time
dependence of the phases in mesas in resistive state has the form
hn(x,t) = xs + un(x) + Re[hn(x) exp (�ixs)] + wl and in the crystal
the phases have only have small oscillations. Here wl account for
the possible phase shifts between the synchronized mesas. We
consider the case with wl = 0 and leave a more general case for
the numerical simulation in the next Section. We consider voltage
range corresponding to the Josephson frequencies close to the fun-
damental cavity resonance x �x1 = ‘p/L. For definiteness, we as-
sume that in the mesas the kink state is formed [34,35]
providing strong coupling to the cavity resonance meaning that
we can use approximations un (x) � p[sgn(x)+1]/2 and sin hn = -
Re[i exp (�ixs � iun(x))] � g(x)Re[iexp (�ixs)] with g(x) � sgn(x).
However, a particular shape of the modulation function g(x) has
no importance in further derivations. For an isolated mesa on the
top of bulk crystal this problem was considered in Ref. [40] where
it was concluded that leaking radiation into the crystal provides
dominating mechanism of resonance damping.

The amplitudes of the phases and magnetic fields obey the fol-
lowing equations: in mesas for jx �maj < L/2, 0 < n < Nm,

ðx2 þ imcxÞhn þ ‘2 @hn

@x
¼ igðxÞ ð3Þ

‘2r2
nhn � ð1� imabxÞhn þ ð1� imabxÞ

@hn

@x
¼ 0 ð4Þ

and in the crystal, for �Nc < n 6 0, the first equation has to be mod-
ified as

ðx2 � 1þ imcxÞhn þ ‘2 @hn

@x
¼ 0: ð5Þ

Using the presentation gðxÞ ¼
P1

m¼0gm sinðpmxÞ with pm =
(2m � 1)p/L, we can find solution of these equations as mode
expansions. In particular, the oscillating magnetic field in the me-
sas can be written as

hðmÞn ðxÞ ¼
X1
m¼1

ipmðgm þ am cos½qmðn� Nm � 1=2Þ�Þ
x2 þ imcx� ‘2p2

m

cosðpmxÞ;

for n > 0, where qm � q(pm,x) with Im(qm) > 0 is the wave vector
describing propagation of the plasma wave along c-axis for the fixed
in-plane wave vector and frequency,

cos qm ¼ 1þ 1� imabx
2‘2 1� ‘2p2

m

x2 þ imcx

 !
: ð6Þ

In the crystal, n 6 0, the oscillating magnetic field can be pre-
sented as Fourier series,
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hðcrÞ
n ðxÞ ¼

1
a

X
k¼2pl=a

Hk cos½qkðnþ Nc þ 1=2Þ� expðikxÞ ð7Þ

with

cos qk ¼ 1þ 1� imabx
2‘2 1� ‘2k2

x2 � 1þ imcx

 !
:

It is crucial that the synchronized mesa array excites discrete
set of modes inside the crystal. For the fixed k, the frequency range
x2 < 1 + ‘2k2 corresponds to propagating waves along the c-axis
while the range x2 > 1 + ‘2k2 corresponds to evanescent waves.
At the frequency x2 = 1 + ‘2k2 the uniform plasma mode is excited.
The decay length of the plasma mode in terms of the number of
junctions, Nd(x) = 1/Im[qk(x)], has a sharp maximum at this
frequency, see Fig. 2. For a � 2L the mode with the wave vector
k = 2p/a plays the most important role, because the frequency of

the uniform mode x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2ð2p=aÞ2

q
is close to the cavity-reso-

nance frequency inside the mesa x1 = ‘p/L.
The unknown coefficients am and Hk have to be found from

matching at the interface, hðmÞn ðxÞ ¼ hðcrÞ
n ðxÞ for n = 0,1. Taking the

projection of the equation hðmÞ0 ðxÞ ¼ hðcrÞ
0 ðxÞ to mode m, using

SmðkÞ ¼
Z L=2

�L=2
dx cosðpmxÞ cos kx ¼ 2ð�1Þmpm cos½kL=2�

p2
m � k2 ;

we obtain equation expressing am via Hk

ipmðgm þ am cos½qmðNm þ 1=2Þ�Þ
x2 þ imcx� ‘2p2

m

¼ 1
a

X
k¼2pl=a

Hk cos½qkðNc þ 1=2Þ�4ð�1Þm

L
pm cos½kL=2�

p2
m � k2 :

Note that Sm(k) satisfy the orthogonality conditions

2
aL

X
k¼2pl=a

SmðkÞSm0 ðkÞ ¼ dmm0 :

On the other hand, the inverse Fourier transform of the equa-
tion hðmÞ1 ðxÞ ¼ hðcrÞ

1 ðxÞ allows us to express Hk via am

Hk cos½qkðNc þ 3=2Þ� ¼
X1
m¼1

2ð�1Þmip2
m

x2 þ imcx� ‘2p2
m

� cos½kL=2�
p2

m � k2 ðgm þ am cos½qm0 ðNm � 1=2Þ�Þ:
Fig. 2. The frequency dependence of the decay length along c-direction, Nd, for the
fixed in-plane wave vector and representative parameters specified in the plot.
Eliminating Hk, we obtain the linear equations for am

ðcos½qmðNm � 1=2Þ� � cos½qmðNm þ 1=2Þ�Þam

�
X1
m0¼1

J mm0am0 cos½qm0 ðNm � 1=2Þ� ¼
X1
m0¼1

J mm0gm0

with the matrix

J mm0 ¼
pm0 x2 þ imcx� ‘2p2

m

� �
pm x2 þ imcx� ‘2p2

m0
� � 2

aL

�
X

k¼2pl=a

SmðkÞSm0 ðkÞ 1� cos½qkðNc þ 1=2Þ�
cos½qkðNc þ 3=2Þ�

� �
:

Near the fundamental-mode resonance x � ‘p1 the amplitude
a1 dominates and we can use the single-mode approximation
neglecting all other amplitudes. This leads to the simple result

a1 �
g1J 11

cos½q1ðNm � 1=2Þ� � ð1þ J 11Þ cos½q1ðNm þ 1=2Þ�

� g1J 11

q1 sin½q1Nm� � J 11 cos½q1ðNm þ 1=2Þ� ð8Þ

with

J 11 ¼
2
aL

X
k¼2pl=a

4p2
1 cos2½kL=2�
ðp2

1 � k2Þ2
1� cos½qkðNc þ 1=2Þ�

cos½qkðNc þ 3=2Þ�

� �

and q1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1�imabx

‘2

x2�‘2p2
1þimcx

x2þimcx

r
. With this result, one can obtain the

oscillating phases and fields in the mesa. Also using Eq. (3) and
keeping only m = 1 in the sum, we obtain the coefficients Hk which
determine the oscillating magnetic field inside the crystal, Eq. (7).
For an isolated mesa on bulk crystal corresponding to the limit
a,Nc ? +1, the following approximate result can be derived [40]

J 11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� imabx

p
ð0:57þ 0:31iÞ=‘, suggesting the following presen-

tation J 11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� imabx

p
b1=‘, where b1 is the complex function of

the order unity. The amplitude of the oscillating magnetic field on
the top of the mesa can be represented as

hðmÞNm
ðxÞ � ip1g1 cosðp1xÞ

x2 � ‘2p2
1 þ imcxþA1ðxÞ

; ð9Þ

where the complex function A1ðxÞ

A1 ¼ �
x2 � ‘2p2

1 þ imcx
� �

b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2�‘2p2

1
þimcx

x2þimcx

r
sin½q1Nm� þ b1 1� cos q1 Nm � 1

2

� �	 
� �
ω

Fig. 3. Comparison of the frequency dependence of the oscillating magnetic field at
the mesa top for isolated mesa and mesa array. The frequency dependence of the
oscillating magnetic field at the bottom of the base crystal for mesa array is also
shown. Parameters used in calculations are specified in the plot.



Fig. 4. The frequency dependences of the oscillating magnetic field at the mesa top
for different periods of the mesa array. Other parameters are the same as in the
previous plot.
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Fig. 5. Phase coherence of the Josephson oscillations between different stacks for
different Lm. The coherence is measured by the correlations functions jgj,L/Rj defined
in Eq. (11).
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determines the damping of the resonance and its frequency shift in
all quantities.

Fig. 3 illustrates the Josephson-frequency dependence of the
oscillating magnetic field amplitude inside the mesa near the cav-
ity-resonance frequency for the isolated mesa and for the mesa ar-
ray with a = 2L. One can see that for used parameters the
corrections are weak. Above the main peak one can see a small
dip caused to excitation of the almost uniform standing wave inside
the crystal. To verify this, we also show the plot of the oscillating
magnetic field at the bottom of the base crystal. The dip in the mesa
field corresponds to the rather sharp peak of the field at the bottom
of the crystal. Note also that the resonance is displaced to lower fre-
quency with respect to the uniform cavity mode ‘p/L because plas-
ma oscillations excited inside the mesa are not uniform in the c
direction. The width of resonance is mostly determined by the leak
of radiation into the base crystal. The dip is located slightly below
the frequency of the uniform plasma wave inside the crystal which
for these parameters is larger than the cavity-resonance frequency.

Fig. 4 shows evolution of the resonance shape with variation of
the array period a. We can see that with increasing a the dip moves
to smaller frequencies. The dip has maximum amplitude and lo-
cated at the peak for a = 2.05L. It is interesting to note that the res-
onance in mesa is actually strongest when the dip is located below
the peak at a = 2.1L. The reason is that in this case the wave excited
at the peak frequency and the wave vector k = 2p/a is in decaying
range, see Fig. 2 and, as consequence, the mesas loose less energy
to radiation at the resonance frequency. Nevertheless, we expect
the strongest interaction between the mesas and optimal condi-
tions for synchronization when the two resonances coincide.

4. Numerical Simulations

To find the condition for synchronization between mesas and
checked the stability of the synchronized state, we solve Eqs. (1)
and (2) numerically for two mesas. The details of the numerical
procedure are presented in Ref. [36]. The number of junctions in
the base is Nc = 200 and in the mesa is Nm = 50. We take mc = 0.02,
mab = 0.2 and ‘ = 266.5. To ensure that the resulting state is stable,
we add an artificial weak white noise current in Eq. (1) in simula-
tions, heInðx; tÞeIn0 ðx0; t0Þi ¼ 10�5dðx� x0Þdðt � t0Þdðn� n0Þ. To study the
coherence between the different stacks, we introduce the order
parameters at the mesas’ edges

rl;L=R ¼
1

Nm

XNm

n

expðihl
n;L=RÞ; ð10Þ

where hl
n;L=R is the phase difference for n-th junction at the left (L) or

right (R) edge of the l-th mesa. The time average of
jrl;L=Rj;�rl;L=R ¼

R T
0 jrl;L=Rjdt=T measures the phase coherence at the
edges of the mesa. For coherent oscillations of phase difference
rl,L/R = 1 and for completely random oscillations rl,L/R ? 0 when
Nm ?1. To quantify the phase coherence between different mesas,
we introduce a correlation function

gl;L=R ¼
1
T

Z T

0
r�1;Lrl;L=Rdt; ð11Þ

where we have taken the left edge of the first mesa as a reference.
The amplitude jgl,L/Rj measures the coherence between the phase
oscillations at left or right edges of the l-th mesa and at the left
edge of the first mesa while the phase of gl,L/R represents the phase
shift between them.

Let us first consider two identical mesas with width L = 0.3kc

and with a separation Lm. They locate at the position L away from
the edges of the base crystal. They are biased by the same current,
I1 = I2 = Iext, as shown in Fig. 6a. The results for different Lm is
shown in Fig. 5. The main peak at the left side corresponds to the
fundamental cavity mode of the mesa x1 = ‘p/L and the the peak
at the right side corresponds to the second cavity mode x2 = 2‘p/
L. When the frequency of the plasma oscillations in the mesa
matches the cavity frequencies xm = m‘p/L, jgj,L/Rj increases indi-
cating a tendency of synchronization between the two stacks.
When Lm � nL, the phase coherence between the different mesas
becomes maximal. This is clearer for the second cavity mode,
where the two stacks do not synchronize at all when Lm – nL. For
Lm = 0.7kc, the peak at Iext = 2.0Ic is due to the cavity resonance in-
side the mesa. However the resonance occurs at smaller Iext com-
pared to that with Lm = nL. The downshift is due to the strong
radiation damping through the base crystal as shown in Fig. 3.

The reasons for the better coherence when Lm = nL are as fol-
lows. For the plasma oscillations uniform along the c axis with
qk = 0, the in-plane dissipation is absent and the plasma mode is
only damped by the weak dissipation along the c-axis according
to Eq. (6). However, for nonuniform oscillations with a finite wave-
number qk, the in-plane dissipation becomes dominant for
Nm [ 103, and the nonuniform plasma oscillations in the base crys-
tal decays quickly. Therefore the interaction between two mesas is
weak and the synchronization becomes difficult. When Lm = nL, the
uniform cavity modes with qk = 0 are efficiently excited as shown
in Fig. 6a and b. In this case two mesas are strongly coupled
through the base crystal and they can be easily synchronized.
When Lm – nL, only nonuniform modes can be excited and the
plasma oscillations in the base crystal is strongly damped by the
in-plane dissipation. The amplitude of plasma oscillations is small



Fig. 6. Snapshots of the electric field (first row), magnetic field (second row) and Josephson current sin (hn) (third row) in the whole system. (a) and (b) are obtained at the
first and second cavity resonance for Lm = L. (c) and (d) are results near the first cavity resonance for Lm – nL.
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Fig. 7. Voltage difference between two mesas D V = V2 � V1 when the mesas are
biased by different current I2 = I1 + DIext.
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in comparison with the case Lm = nL, see Fig. 6c and d. Thus syn-
chronization between the mesas is hard to attain. Therefore, the
maximal synchronization is achieved when the position and size
of mesas are commensurate with the standing wave in the base
crystal, because the nonuniform plasma oscillations decay quickly
in the base crystal.

Let us consider the phase shifts of Josephson oscillations be-
tween edges of mesas. As shown in Fig. 6a, the oscillating supercur-
rent changes sign from the left edge to the right edge in the same
mesa. This indicates that the p phase kink is excited at the cavity
resonance [34,35] which helps to pump energy into the plasma
oscillations, as described by the term at the right-hand side of
Eq. (3). As a consequence, the amplitude of the oscillations is en-
hanced sharply at the cavity resonances. In Fig. 6a and b, the
Josephson oscillations at the left/right edges have the same phase
for different stacks when Lm = (2n + 1)L. For Lm = 2nL, there is p
phase shift between two mesas to match the standing wave in
the base crystal.

In Fig. 7, we show the voltage difference between two mesas
with Lm = L when they are biased by different currents I2 = I1 + DIIext.
At the cavity resonance when two mesas are synchronized, they
have the same voltage despite that they are biased by slightly dif-
ferent currents. Away from the cavity resonance, two mesas decou-
ple from each other and they oscillate at different frequencies.
5. Conclusions

We have investigated the synchronization of mesa array
through the plasma oscillations in the base crystal. If one regards
the mesa arrays and base crystal as a whole, the plasma oscillations
inside depends on the configuration of mesa arrays as a result of
geometrical resonance. The amplitude of the plasma oscillations
and the tendency of synchronization is governed by the dissipation
of the whole system, hence is determined by the configuration of
mesa array. When the period of mesa array a close to the multiple
integer of the mesa width L, a � nL, the dissipation is minimized
and mesas are synchronized at cavity resonances of the whole sys-
tem. Alternatively, one may treat mesa and base crystal separately.
When the cavity resonance of mesa matches of that in the base
crystal, mesa array is synchronized. Otherwise, the cavity reso-
nance of the mesas is suppressed by the strong dissipation due
to the radiation into the base crystal, and the mesa array is not syn-
chronized. Therefore the optimal configuration for synchronization
is a � nL. The above picture is corroborated by both analytical cal-
culations and numerical simulations.
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