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Linear magnetoconductivity in multiband spin-density-wave metals with nonideal nesting
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In several parent iron-pnictide compounds the resistivity has an extended range of linear magnetic field
dependence. We argue that there is a simple and natural explanation of this behavior. Spin density wave transition
leads to Fermi-surface reconstruction corresponding to strong modification of the electronic spectrum near the
nesting points. It is difficult for quasiparticles to pass through these points during their orbital motion in magnetic
field, because they must turn sharply. As the area of the Fermi surface affected by the nesting points increases
proportionally to magnetic field, this mechanism leads to the linear magnetoresistance. The crossover between
the quadratic and linear regimes takes place at the field scale set by the SDW gap and scattering rate.
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The studying of transport in magnetic field is the simplest
way to characterize electronic structure of new materials
and quasiparticle scattering. The transport properties of the
recently discovered iron pnictides in magnetic field have
some anomalous features. In particular, the resistivity is found
to have linear dependence on magnetic field for several
parent and underdoped compounds with spin-density wave
(SDW) long-range order, such as CaFe2As2,1 BaFe2As2,2

Ba(Fe1−xRuxAs)2,3 PrFeAsO.4

The linear magnetoresistance is not a new effect. It was
first reported by Kapitza for bismuth in 1928,5 see also Ref. 6,
and later was found in several other metals, see, e.g., Refs.
7–11 and discussion in the Pippard book.12 One can hardly
expect a single universal mechanism of this phenomenon. In
different materials the linear magnetoresistance may appear
due to completely different reasons. In particular, Abrikosov
demonstrated that the linear dependence appears in the case
of Dirac electronic spectrum.13 This mechanism is frequently
used for interpretation of the iron-pnictides data. Moreover, the
linear magnetoresistance sometimes is presented as a proof for
the Dirac spectrum.

We argue in this Rapid Communication that the presence
of the SDW order leads to a simple and natural mechanism
for the linear magnetoresistance in the parent iron-pnictide
compounds, which, surprisingly, was not discussed. The SDW
order mixes the electron and hole bands which have different
shapes. As a consequence, the nesting at the SDW wave
vector is only ideal at lines on the Fermi surface. Weak
SDW order only modifies electronic spectrum near these lines
leading to reconstruction of the Fermi surface, as illustrated in
Fig. 1. For fixed pz cross section the Fermi surface consists
of four banana-shape pockets (only halves of two bananas
are shown in Fig. 1). Every pocket is characterized by two
sharp turning regions (banana tips) located near the nesting
points. In the magnetic field applied along the z direction the
quasiparticles move along the orbits located in the xy plane.
The turning regions where the orbits transfer in between the
electron and hole branches the velocity changes sharply and
smooth orbital motion is interrupted. This leads to enhanced
quadratic magnetoconductivity at small magnetic field and
extended region of the linear magnetoconductivity. The latter
effect appears due to the linear growth with the field of regular
regions of Fermi surface affected by the turning regions. The
crossover field between the two regimes is proportional to the

SDW gap �m and inversely proportional to the scattering time
τ . In the quadratic regime at small fields the turning-point
contribution exceeds the conventional magnetoconductivity
�σ (H )/σ (0) ∼ (eHτ/mc)2 by the factor ∼εF /�m, where
m is the effective mass and εF is the Fermi energy. This
mechanism has been considered in Ref. 14 for a metal with a
single circular Fermi surface reconstructed by commensurate
density wave.

The Fermi surface reconstruction caused by the magnetic
transition in real materials has been explored by ARPES15

and quantum oscillations.16 It may be rather complicated.
To illustrate the mechanism, we consider a simple two-band
model with the SDW order, see, e.g., Ref. 17, which also has
been used to describe the SDW transition in chromium.18 The
model is described by the Hamiltonian

H = H0 + HAF , (1)

where the free-electron part is composed of the electron and
hole contributions19

H0 =
∑
p,σ

(ξ1,pc
†
pσ cpσ + ξ2,pd

†
pσ dpσ ), (2)

and the antiferromagnetic part is given by

HAF = −
∑
p,σ

σ�m(c†pσ dpσ + d†
pσ cpσ ) (3)

with �m being the SDW gap.
The simplest shapes of the free-electron spectra qualita-

tively describing iron pnictides are parabolic bands,

ξ1,p = ε1,0 − μ + p2
x

2mx

+ p2
y

2my

, ξ2,p = ε2,0 − μ − p2

2m
.

These bands are characterized by the Fermi momenta,

pF,j = √
2mj (μ − ε1,0), pF,h ≡ pF,2 = √

2m(ε2,0 − μ),

with j = x,y. The angular-dependent Fermi momentum for
the electronic band is given by pF,1(θ ) = (cos2 θ/p2

F,x +
sin2 θ/p2

F,y)−1/2. In the further analysis, we assume that for the
selected pz cross section the inequality pF,x > pF,h > pF,y

holds. Introducing ratios, rα = pF,h/pF,α with rx < 1 and
ry > 1, we obtain that the ideal nesting is realized at the angles
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FIG. 1. (Color online) Fermi surface in the region px,py > 0 for
a two-band metal with the SDW long-range order. Dashed lines show
the bare Fermi surfaces. The electron Fermi surface is displaced by
the ordering wave vector Q to zone center. Arrows show direction
of the orbital motion in the magnetic field. The inset zooms into the
region near one turning point.

satisfying

tan θns =
√

1 − r2
x

r2
y − 1

.

These nesting angles depend on the z-axis momentum pz and
trace the nesting lines on the Fermi surface. To proceed, we
will analyze the electronic spectrum near the nesting angles in
the presence of the SDW order.20

In the SDW state the quasiparticle spectrum has the
following form17,21,22

Ep,± = ξ+
2

±
√

ξ 2−
4

+ �2
m, (4)

with ξ± = ξ1,p ± ξ2,p. We assume �m � maxFS |ξ−| so that
the SDW order only modifies the spectrum near the nesting
angles. For the branches crossing the Fermi level the sign has
to be selected as ± → sgn(pF,1 − pF,2). The Fermi velocities
for the modified spectrum are

v = v+
2

± v−
2

ξ−√
ξ 2− + 4�2

m

, (5)

with v± = v1 ± v2 and vα = ∂ξα,p/∂p. It is convenient to use
the polar coordinates (px,py) = (p cos θ,p sin θ ) for fixed pz

and introduce the radial and angular components of the Fermi
velocity, vα,p = dξα,p

dp
, vα,θ = 1

p

dξα,p

dθ
, where α is the band index.

As the second band is assumed to have the holelike spectrum,
we have v2,p < 0.

In the case of weak SDW order, using linear expansion near
the Fermi momenta ξα,p ≈ vα,p(p − pF,α), we obtain from

Ep,± = 0 the renormalized Fermi surface

pF,± ≈ pF,1+pF,2

2
±

√
(pF,1−pF,2)2

4
− �2

m

v1,p|v2,p|
(we omitted θ dependence in all pF ’s). It consists of four
banana-shaped sections, the two banana halves are shown in
Fig. 1. Each section has two sharp turning points (tips of
banana). The angles of these turning points θt can be found
from the following condition:

|pF,1(θt ) − pF,2(θt )| ≈ 2�m√
v1,p|v2,p| , (6)

and the Fermi momentum at the turning point is pt =(
pt,1 + pt,2

)
/2 with pt,α = pF,α(θt ). The Fermi surface is

eliminated in the angular range

|θ − θns| < |θt − θns| ≈ 2
√

v1,p|v2,p|�m

[v1 × v2]zpt

.

As the curvature of the Fermi surface sharply increases near
the turning points, they have strong influence on transport
properties at small magnetic fields.

Within the relaxation-time approximation for the Boltz-
mann equation, the classical conductivity tensor for arbitrary
magnetic field is given by

σαβ = 2e2
∑
bands

∫
dpz

(2π )3
Sαβ(pz), (7)

where Sαβ (pz) describes the contribution from a single pz slice

Sαβ = c

eH

∫
dp

v
vβ

∫
p

dp′

v′ v′
α exp

(
−

∫ p′

p

dp′′

v′′
c

eHτ

)
. (8)

All p integrals are performed along the fixed-pz orbits on the
Fermi surface. This presentation is similar to the so-called
Shockley “tube integral”.23,24 It goes beyond the small-field
expansion and provides a very convenient basis for analysis of
the conductivity especially when either the scattering rate 1/τ

or the Fermi velocity v have sharp features.
We assume that the scattering rate is regular near the

turning point and the anomalous behavior only appears due to
modification of spectrum. This assumption definitely breaks
down in the vicinity of the SDW transition point Tm where
scattering on the magnetic fluctuations becomes strong. The
integral in the exponent of Eq. (8) describes the orbital motion
of the quasiparticles along the Fermi surface in the magnetic
field. The SDW coupling forces the carriers to switch between
the hole and electron orbits in the vicinity of the turning
regions.

The simplest approximation is to treat the turning region
as a point where the Fermi surface has a sharp cusp and
the velocity jumps. This approximation actually gives correct
result at high magnetic fields. We consider the contribution
from the small section of the Fermi surface near the turning
point in which the orbital motion starts at the point ph of the
hole branch and ends at the point pe of the electron branch
[this sets the limits for the p integral in Eq. (8)]. The distances
from these points to pt = (pt,x,pt,y) are in the intermediate
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range: They are much smaller than the Fermi momentum but
the SDW corrections to the spectrum are assumed already to
be small. The former assumption allows us to neglect in this
region the bare curvature of the Fermi surface. In this case the
direct calculation of the contribution from one turning point
gives Sxx ≈ τv2

x,2
|pt−ph|

v2
+ τv2

x,1
|pe−pt |

v1
+ vx,2(vx,1−vx,2) eHτ 2

c
.

For the symmetric point (−pt,x,pt,y) the orbital motion starts
at the electronic branch and ends at the hole branch. Therefore
the contribution from this point to the field dependent
part is Sxx(H )−Sxx(0)≈v1,x(v2,x −v1,x)eHτ 2/c. Collecting
contributions from all eight turning points, we obtain

S(tp)
xx (H ) − Sxx(0) ≈ −4(v2,x − v1,x)2 eHτ 2

c
. (9)

We see that treating the turning regions as sharp cusps leads
to linear magnetoconductivity.25 As can be seen from Eq. (8),
this dependence appears because the Fermi momentum range
within which quasiparticle can cross the turning point during
its orbital motion is proportional to the magnetic field, �p =
veHτ/c.

An accurate consideration should take into account a finite
curvature of the Fermi surface in the turning region. To perform
p integrals over the Fermi surface, we have to find good
parametrization. Due to the very simple dependence of velocity
on the parameter ξ−, Eq. (5), it is convenient to parametrize the
integration over the Fermi surface in terms of this parameter.
For a small shift of p along the Fermi surface perpendicular to
the z direction we have dp = dp

v
v × nz. As dξ− = v−dp, using

Eq. (5) for velocity, we straightforwardly derive the relation

dp

v
= dξ−

[v1 × v2]z
,

which we can use to perform the integration over the Fermi
surface in Eq. (8). In the vicinity of the nesting point we can
neglect variations of [v1 × v2]z. Introducing the new variable

w = c

eHτ

ξ−
[v1 × v2]z

and the reduced field h = H/H� with the field scale

H� = 2c�m

eτ [v1 × v2]z
, (10)

we obtain ξ−/2�m = hw and

v(w) = v+
2

± v−
2

hw√
h2w2 + 1

.

As a result, we obtain Sαβ in Eq. (8) in convenient for
calculation form

Sαβ = eHτ 2

c

∫
dwvβ(w)

∫
w

dw1vα(w1) exp [− (w1 − w)] .

We consider the Ep,+ branch located at θ < θt which is shown
in the inset of Fig. 1. For this branch the velocity changes from
the bare hole velocity v2,x to the bare electron velocity v1,x as
w changes from large negative to large positive values.

FIG. 2. (Color online) Function G(h) in Eq. (12) which de-
termines shape of magnetoconductivity. Dashed line shows the
high-field asymptotics.

The contribution to the conductivity from one turning point
in the pz slice,

Sxx(H ) = 2τ�mh

[v1 × v2]z

∫ we

wh

dw

∫
w

dw1 exp [− (w1−w)]

×
(

v+,x

2
+ v−,x

2

hw√
h2w2+1

)

×
⎛
⎝v+,x

2
+ v−,x

2

hw1√
h2w2

1 +1

⎞
⎠ .

While the whole Fermi surface additively contributes to the
zero-field conductivity, the finite magnetoconductivity only
appears due to the finite Fermi surface curvature. As the
turning regions have the largest curvature, they dominate
in the magnetoconductivity. The total contribution from all
eight turning points to the field-induced change of Sxx can be
represented as

S(tp)
xx (H ) − Sxx(0) = 8v2

−,xτ�m

[v1 × v2]z
G(h), (11)

G(h) =
∫ ∞

0
dx

∫ ∞

0
dy exp (−y)

×
⎛
⎝ x2 − h2y2/4√(

x + h
y

2

)2+ 1
√(

x − h
y

2

)2+ 1
− x2

x2+ 1

⎞
⎠ .

(12)

The dimensionless function G(h) is plotted in Fig. 2 and has
the following asymptotics

G(h) =
{− 3π

16 h2 for h � 1
π
2 − h for h 
 1

.

The linear asymptotics reproduces the result (9) obtained
by direct calculation. The typical field scale describing the
crossover between these two regimes is given by Eq. (10).14 It
is proportional to the SDW gap and inversely proportional to
the scattering time.
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Using presentation for the zero-field conductivity σxx(0) =
2e2 ∑

bands

∫
dpzdθ

(2π)3 m(θ )v2
x(θ )τ (θ ), where m(θ ) is the cy-

clotronic mass defined for the bare bands, we can present
the relative change of conductivity due to the turning points at
small fields, H � H�, as

σ
(tp)
xx (H ) − σxx(0)

σxx(0)
= − 3

32

(
eHτ

c

)2
〈
v2

−,x [v1 × v2]z
〉

〈
mv2

x

〉
�m

.

(13)

Since the conventional magnetoconductivity can be estimated
as

[
σ (0)

xx (H )−σxx(0)
]
/σxx(0)≈− [eHτ/(mc)]2, we can see

that the contribution from the turning points exceeds the
conventional one by the factor εF /�m. In the linear regime, for
H 
 H�, the relative change of conductivity can be evaluated
as

σ
(tp)
xx (H )−σxx(0)

σxx(0)
=

〈
v2

−,x

[v1×v2]z

〉
〈|m|v2

x

〉 �m−
〈
v2

−,x

〉
π

〈|m|v2
x

〉 τeH

c
. (14)

We emphasize that the linear term does not depend on the
SDW gap and coexists with the smaller quadratic contribution
coming from the regular Fermi surface. The linear behavior
holds until eHτ/(mc) � 1.

In conclusion, we considered magnetoconductivity for
a multiband metal with the SDW order. We demonstrated
that, due to the appearance of sharp turning points at the
Fermi surface, magnetoconductivity becomes linear when the
magnetic field exceeds the field scale proportional to the SDW
gap and inversely proportional to the scattering time. This
mechanism provides a more natural explanation for the linear

magnetoresistance observed in iron pnictides1–4 than the
popular mechanism based on Dirac spectrum. Taking typical
values v = 107cm/sec, �m = 10 meV, and τ = 10−12 sec, we
estimate H� ≈ 2T, in qualitative agreement with experiment.
As both �m and τ increase with decreasing temperature, we
can expect nonmonotonic temperature dependence of the field
scale. Namely, we can expect sharpening of the magnetic
field dependence as the temperature approaches the transition
point due to decrease of �m and at low temperatures due
to increase of τ . Such behavior was not observed. Typically,
the field scale monotonically decreases with temperature,2,3 as
expected when the temperature dependence of τ dominates.
However, no detailed study of magnetoresistance in the close
vicinity of the SDW transition was reported so far.

The localized Fermi surface reconstruction is not the only
mechanism which can lead to the linear magnetoconductivity.
Alternatively, close to the transition point the scattering caused
by the antiferromagnetic fluctuations leads to suppression
of the relaxation time near the nesting points (“hot spots”).
This also gives the linear magnetoconductivity due to the
interruption of the orbital motion.26 The scattering mechanism
clearly becomes dominant as the temperature approaches Tm.
The crossover between the two mechanisms in the vicinity of
the transition point is an interesting topic for future study.
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