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1. Problems of real life. . .and history
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4.Barriers distribution



‘,J..’I!D’uf.

A

.,
Their economic importance was early realized since ancient agrarian economies
— were based exclusively on water flow

“
The oldest problems connected with extreme values arise from floods ;
&
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Their importance has increase
In industrial economies
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Consider the mean daily discharge of a .
river at a specific station.
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Among the 365 daily discharges during
a yeat, there is one measure which is the

largest. This discharge is called annual
flood.
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The critical question is how to find
the right distribution of floods
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History. .. &,

1909. Nicolaus Bernoulli: n men of equal age die within t years.
What is the mean duration of life of the last survivor?

1925. L.H.C. Tippett: probabilities of the largest normal values for
different sample sizes up to 1000

1927. M. Fréchet introduced stability postulate

The basic work for extreme values:

R.A. Fisher and L.H.C. Tippett, Proc. Cambridge Phil.
Soc. 24, 180 (1928).

B.V. Gnedenko and A.N. Kolmogorov, Limit distributions
for Sums of Independent Random Variables (Addison Wes-
ley, Reading, MA, 1954).

E.J. Gumbel, Statistical Theory of Extreme Values and
Some Practical Applications, National Bureau of Standards
Applied Mathematics Series, vol. 33 (1954); Statistics of
Extremes (Columbia University Press, New York, 1958).
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1. Extreme value statistics A '

1.Extreme statistics: What is the asymptotic distribution of the maximal
(or minimal) value reached by the variable X?
How does this distribution depend on the distribution of random force?

2.Persistence probability: What is the probability that the
variable has never attained a certain threshold?

3.Large deviations: What is the probability that the variable has
assumed a positive sign for a certain fraction of the total time elapsed?
Is this distribution peaked around its mean value or not?

4.Persistent large deviations (Generalized persistence): What is the
probability that the fraction of time during which the variable has
been positive, has always been larger than a certain value?



[Fatigue analysis]

Given: a set of N random variables {Xi}

Example: imagine a complex device, containing a
number of critical components each one characterized by a life time Xi

The life time of the whole device is determined by the
minimum between component lifetimes. In such cases the useful
characteristics of the random sample are their extremes:

L = min{X.} W, = max{X.}

N j=1.2..n i=12..n

We are interested in the limit of large samplesN>>1 | and,
in particular, in the asymptotic distribution of the random descriptor W
(sum, average, minimum, maximum or whatever else).

n



Rigorously the problem can be formulated in the following manner:

We have to determine two sequences d_, and bn
and a limit distribution H (X) such that, when N —> o0 :

Prob{W”b_ h < x} S H(X)

n

The main known results in probability theory are for independent
identically distributed random variables (hereafter abbreviated as
iid variables), i.e. when the joint probability distribution of the
sample is simply:

Prob[X, <X,...., X, <X ]=Prob[X; <x]...Prob[X, <x ]

and all the X's have the same distribution Prob[X, < x]= F(X)



The problem of extreme statistics of iid variables can be easily cast:
if F (X) Is the distribution of each iid variable forming the sample,

then the probability distribution for the maximal value W, = rPg;\x {Xi} IS:
1=1,2,...n

Prob[W < x]=Prob[X, <x,..., X <X]

=[F()I" =H,(x)
where the last equality is the definition of H ,(X)

The asymptotic distribution problem, hence, is the determination
ofd,, b, ,and H, (X) suchthat:

lim(F(a, +b x))" =limH_(a +b x) = H(x)

While the exact solution for the problem of the asymptotic distribution of the sum of

iid random variables is widely known, the relation between extreme statistics and statistical
physics has not been deeply investigated. That such a relation should exist is however
intuitively obvious: for example, at low temperature a disordered system will preferentially
occupy its low-energy (i.e. minimal) states, which are random variables because of the
disordered nature of the problem.



Extreme Statistics

X X FX,, X))

Extreme value statistics after n trials (ex. minimum W¥»):

— utypicaln Value (CI
. .H) W —a,
— “typical” fluctuations (&) ZH o E?
#
P(z,)—==>H(2)

— reduced variable

— asymptotic distribution

Independent an identically distributed random variables

F(X,...X,)=J(X)... (X))

Three universality " . Gumbel (exponential tail of f{x) )
classes for H(z), — .
R <+ Weibull (bounded variables)
of f{x) * Fréchet (power law tail of f{x) )
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The Stability Postulate o o0

The distribution of the largest value in Nn
Consider N samples, observations will tend to the same asymptotic
each of size n — expression as the distribution of the largest
value in samples of size n, provided that such an
asymptote exists.

] = ---
D For the probability that the largest value
is below x:
il
............... n
F'(X)=F(a x+b,)
5
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Stability postulate [~ " (X) —F (a X+b )
n n

1.a,=1
F'(x)=F(x+b,)
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log(~log F (x)) log n+log(—log F(x)) =log(—log F(x+a,))

97N = log(~log F (x)) = Const + 129"

F™ (%) = F(x+b_)

on_l_bm :bnm ::>

log[-log F(X)]=x/c+k ——>

log(—log F (X))

NG

F'()]" = F(x+b,+b,)

b, =clogn

~log F(x) =", a=-1/c>0 | F(X) = exp(—ne~**)




2. If an differs from unity the two curves F"(x) and F(x) are no longer parallel.
There is a value x’ where the two probabilities are equal. Now the equation
Fn(x’) = F(X’) can be satisfied if and only if F(x’)=0 or F(x’) =1

In the first (second) case the distribution starts (ends) with X’
and is bounded to the left (right)

F(x) =exp(—ne “")




Example of application in physics:

Etching of a thin filin of aluminium immersed in a corrosive solution

Expenment: [.Balazs et F.Gouyet{1995), L.Balazs ( 1996) PMC Ecole Polytechnioue.

CCD Camera

) Aluminium

Solution

.
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N_ft): Number of etching “molecules™

Etching model

: Volume of the corrosive solution
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B. Sapaval et al. {1998)
N _ (¢) Corrosion power
T &t .
p(t) = T of the solution at
time ¢
=1 :
Solid
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Study of the model: phenomenology

Numerical simulations

» L: Size of the attacked side;

* J': volume of the etching solution;

* pf0)): starting value of the corrosive
power fixed to 1 (V= p(t) V)

* Ktching dynamics:

» First regime. smooth interface liguid-solid
* Production of debris of growing size

» Growing roughness of the interface

* Spontaneous arrest of dvnamics at time 7

* Findl fractal interface liquid-solid (geometric correlations)

I callaboration with
B.Sapaval & A.Gabriell




Quantity extremal: arrest time of the process

(same behavior for the maximal depth attamed by the
solution inside the solid)

Corrections to the scaling

behavior
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Domain growth

(Temperature: 7= infinity -> 0

It seetns self-
« Quench from the disordered to the ordered phase P similar...

« Domam growth: diverging characteristic length

W— Universal

L(t) ~ tlfz | dynamical
exponent

it seems
. simple!

+ Conserved order parameter: z=3, not conserved: z=2



Persistence

What 1s the probability for a spin to never flip up to time # ?

ti1s not so _B -
R(‘[) ~ 1 \L Persistence

- cxponent
v lsimg ~ 1d: 6=3/8 (analytique) s, (1 + 1) = sign( Z s, (1)
model 2d: 6=0.22 (numeérique) p— (r)“}

Equation 2d: 6=0.188(numeriqgue)

» Diffusion 1d: 6=0.121 (rumeérigue) { 5
P(x.1) 2
=V p(x,t) }

J(I) = sign (9 (xy,1))
It depends on model, dimensionality, dynamics
details, anisotropy, ...etc..



I.Darmic et C.Gadréche
(1995)

Occupation times and large deviations

£
Time averaged magnetisation M(t) - lj c}'(u)du
it
0

Red Spins:

« always ~ +1, i.e. («almost »)
persistent Adft) ~ 1

Blue Spins:

- always~-J ie M) ~-1

Green Spins:

* M) ~0

Average value 1s not the
most probable value




Persistence Spectrum H.Chaté, A.Lemaitre

R([ JC) 5 Z—E?(x) &1)= & (Usual) Persistence exponent

Spectrum (numerical) Ising model d=1,2.3

G-1)= 0 (because R(t,-1)=1)
For -1<x<1, family of exponents?

« Singular» behavior
near x ~ 1

{but decreasing for larger
dim ensions)
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Exemplary system: elastic medium in random environment.
Models a wealth of physical systems and phenomena:

H = fd”x|:g (::)2 + V(x,u) — F - u}

Dislocations in crystals CDOW and SDW

Domain walls Interacting electrons

Wigner crystals on disordered substrates Spin- and other glasses. ..



H = fd”x|:§ (2:)2 + V(x,u) — F - u}

(Vix,n)V(x,u)) = A*sP(x — x)f(lu — u'|/§)

w(L) = (u(x + L) — u(x)»)"/

W & LY ¢ <1is the roughne-ss exponent
L )] Le.=(C&/A)>ED)

C



Dynamic diagram
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 Ver} Being placed in disordered medium elastic object ge“"‘“"“ “
X )15\% 2 adjusts itself to rugged potential relief A
u . “’%n B o&c;

K?‘ (Vx,u)V(x',u')) = A?8P(x — x")f(lu — u'|/&)

7\ N\
\\ Roughness: w(L) = {((u(x + L) — u(x)]2>l/2

On the intermediate scales where u < a,

A L L T ¢ <1 1s the roughness exponent
W~E&| —
u L.
L X I,
Ebarrier = Ep L f "
L. w(L)
v D-2
_ E, =a,AL;

Le S (CE/ATER y=D-2+42¢



Thermally activated vortex dynamics in random media
Y &

Activated vortex motion:

Creation a vortex loop

Nucleation of new phase
in first order transitions




E (0)

barrier

Driving force f : ( ] T 7.\
—E :
p

f 1/(2-¢)
Lf = Lc (Tp) Lf

Meaning of L., :
At distances L > L
pinning Is not effective

f

U
Ebarrier (Lf ) = EB — Ep (Tp)




How can it work?

How can our object choose this optimal hop?

Y(7) Retarded segments

Should coxitrol dynamigs

v

optimal hop

But... for rare fluctuattions E__ . ~logL

(at best)

Energy gain due to external force ~ |_ qj (T) f)
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Consider a change in the configuration of the
elastic string in the random field:
We call it departure from the initial position 1.

We are interested in the distribution density
Y(r) of the departure times z. To find it we

° 3;0 will determine first the probability distribution

7% W(E) of barriers E controlling string dynamics

...and view the

departure from the
We replace each segment Impurity as a spin

of the length L, flip
by the strong impurity: 1 y — O —_— ' CP
C

>



To derive the distribution of energy barriers we define
the elementary moving “units” of the string as segments
of length L.. The barriers controlling the hop of these
units to the nearest metastable state fluctuate about U.,.

L<L

opt
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d} It costs energy U to flip
(depart from) a site
O Y
@ ; The barriers controlling the flips
(hops) to the neighboring site
fluctuate about U_.
Consider a segment L
d} of three units: {1,2,3} Departure of the
segment is controlled
1 .

uP=max{U,,U,, U }=U,
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Renormalization procedure e

assign to each block
its largest barrier ...

ARG,
e %e
wort®

s

replace each block by a new unit
with these new barriers...

uo

...and repeat the procedure...

Generally we consider blocks
(1) " f .
U2 consisting of m units

U (1) By the same argument as above, we find that the hop of a
segment L’ composed of m blocks L; is again controlled
by U’ = max{Um}. Repeating this procedure, we list all
possible Conﬁgujrations of the advancing string L. If for
large m a limiting form exists for the distribution function
of the energy barriers, this form must be stable under
the max operation. In other words if U = max{U,}, then
the probability distribution of the extrema U i1s the same
as that of each member U,; of the set.



The probability Pr(z) that the largest energy_ barrier
controlling the hop of a string of length L is less than U
is given by the solution of the functional equation

PL(Z) — [PL(GRZ + bn)]na

where z = (U/U,. — b,)/a, and all lengths are measured
in units of L.



The probability distribution of the

largest energy barriers for a pinned segment of length L
is then,

PL(U) ~ exXP [ — 6_(U_Uc ln(L/LC)/UC}
= exp [ = (L/Lc)e” /Y]

and the corresponding probability density is given by

pL(U) = —— ~ — U/l exp [— (L/Lc)e_U/UC}.
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Global distribution: I/ (') = dLn;Pr(U)
L.

‘%r,ofﬂa‘

Vorume T0, Numpus § PHYSICAL REVIEW LETTERS | FeBruary 1993

N, : the density of pinned segments
L of the length L

n ~1/L" v=1+d/d, >2

W(U) N e—U(l/—l)/Uc

F‘I.2. ‘ap fstring v]iyo f: 0. [t.)) and T =170 eXp(U/T) \If('T)d’T p— W(U)dU,

f = 0.076 (bottom) and F, = 0.1. The vertical axis is time,
while the horizontal axis is the position z on the string. Dark
regions indicate where the velocity exceeds 0.01. Maps are
shown for strings of size L = 4096 evolving over a time interval

U(r) ~ T(ro/7)'™, @ = (v — )T /U,

“,

0 . uort®



The mean motion is controlled by the largest departure/waiting time
corresponding to the hop of the optimal segment L (F).

segments on scales L > L, slide freely. —>
{7y ~ f U drV(P)r ~ expl(l — a)U(F)/T]

Tmax — 70 eXI_)[U(F)/T_]

This 1s by construction the time over which L, advances
a transverse distance u,p,. The mean velocity i1s then

v = uop/{T) = exp[—(1 — @)U(F)/T]




Conclusions:

We have shown that the low-temperature dynamics of driven
elastic manifolds in random environment is governed by a
power-law distribution of hopping times.

Note: the linear topology of the string is crucial for carrying out the above
scaling procedure. For a D-dimensional manifold the network of metastable
states generally forms a multi-connected cluster. Following H.J.Hermann and
H.E.Stanley, PRL 53, 1121 (1984) one can however describe this

cluster as a network of nodes connected by one-dimensional links. Each link
consists of a sequence of multiply connected subclusters (beads) and singly
connected sections. The backbone connecting two randomly chosen sites
can be then described as singly connected upon rescaling. Thus we recover
our result.

We therefore expect that the exponential distribution for controlling barrier
is generic for all random correlated systems.



