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Superharmonic Josephson relation at 0-/π-junction transition
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Critical current was recently measured near the transition from 0 to π-contact in superconduc-
tor/ferromagnet/superconductor Josephson junctions. Contrary to expectations, it does not vanish
at the transition point. It shows instead a tiny, though finite, minimum. The observation of
fractional Shapiro steps reenforces the idea that the vanishing of the main sinusoidal term in the
Josephson relation gives room to the next harmonics. Within quasiclassical approach we calculate
the Josephson relation taking into account magnetic scattering. We find that the observed minimum
is compatible with the value of the second harmonics expected from the theory.

PACS numbers: 74.50.+r

According to textbooks equilibrium supercurrent, I, in
a tunnel-barrier Josephson junction depends sinusoidally
on the phase difference, φ, between the superconducting
leads: I = Ic sinφ, where Ic > 0 is the so-called criti-
cal current of the junction. In his seminal work of late
seventies Bulaevskii et al predicted [1] that the sign of
Ic can change (or, equivalently, a shift of π appear in
the argument of the sine) in the presence of magnetic
impurities within the tunnel barrier. Soon after, Buzdin
et al. [2, 3] suggested that such a junction, convention-
ally called now the π-junction, can be realized in a hy-
brid structure where the tunnel barrier is replaced with
the ferromagnetic metal. While predicted theoretically,
experimental realizations of π-junctions remained long
unobserved. Indeed, superconductivity and magnetism
compete; thus conventional ferromagnets would strongly
suppress supercurrent. The first recent successful realiza-
tion of a π-junction [4, 5] utilized the so-called weak fer-
romagnets, and the observation of a non-monotonic de-
pendence of Ic as a function of the temperature [4, 6] and
on the thickness of the ferromagnetic layer [5] served as
the first evidences of the actual realization of π-junctions.
Moreover in the former case, the existence of the temper-
ature T ∗, where Ic reached a minimum with the vanish-
ing magnitude, allowed for a precise identification of the
transition point.

These spectacular observations of π-junction behaviors
remarkably confirmed original predictions of [1, 2, 3] and
yet posed new puzzling questions. The first was that
the observed amplitude of the current in the junctions
appeared two orders of magnitude smaller than that ex-
pected from the theory. H. Sellier et al [6] proposed that
magnetic impurities in the ferromagnet could be the ori-
gin of this effect, and indeed it was recently shown [7]
that magnetic impurities can lead to a noticeable reduc-
tion of the critical current if one assumes somewhat ar-
tificial uniaxial distribution of magnetic disorder. It re-
mains however to understand the effect of a more realistic

isotropic disorder distribution.

Another puzzle concerns the form of the phase-current
relation at the transition point T ∗. Quite generally, the
phase relation has to be periodic in φ. This does not rule
out the possibility of the second or even higher harmon-
ics: I = I1 sinφ+ I2 sin 2φ+ . . . , which indeed appear in
Josephson junctions formed by point contacts, constric-
tions, or normal metals [8, 9]. However the amplitude
of higher order components in the magnetic Josephson
junctions was long considered too low for being observed.
Note now that at T ∗ the coefficient of the first harmon-
ics (I1) vanishes and, therefore, the higher harmonics be-
come dominant. In Ref. [12] the measured critical current
(the maximum of the absolute value of the current-phase
relation) does not vanish at T ∗, but passes through a
minimum. This fact, together with the observation of
fractional Shapiro steps, indicates that the observed cur-
rent is in fact the I2 component. On the other hand no
such component was detected in Ref. [13].

In this Letter we develop a theory enabling the quan-
titative derivation of the full current-phase relation in
the regimes corresponding to actual experiments of Refs.
[6, 12, 13]. For this purpose we generalize the approach
of Ref.[7] which assumes uniaxial magnetic disorder, and
solve the resulting equations numerically without restric-
tion on the values of the parameters. Extracting the
exchange field and magnetic scattering time from the
published data on the temperature dependence of Ic,
we estimate the expected magnitude of I2. We find
that the predicted values agree favorably with those ob-
served in Ref. [12], while the expected magnitude of I2
for the sample of Ref. [13] is too small to be observ-
able. A powerful and microscopic approach to super-
conductivity in disordered metals is offered by the qua-
siclassical theory in a form described in [14, 15]. The
theory can also describe ferromagnetism, by inclusion of
an exchange field acting on conduction electrons. This
was done for instance in Refs. [16, 17], where the spin-
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orbit coupling with impurities was also included. How-
ever, for the weak ferromagnet CuxNi1−x used in exper-
iments of [4, 6, 12, 13], the spin-orbit coupling is ex-
pected to play a minor role. The more important effect
should come from the strong inhomogeneities of the mag-
netic field on both the microscopic- (magnetic impurities)
and mesoscopic scales (randomly oriented magnetic do-
mains). Our theory takes this effect into account.

The metallic ferromagnet is described by the following
Hamiltonian:

H =

∫

dr
∑

ss′

ψ†
s

[(

−
∇

2

2m
− µ+ U

)

δss′ − h.σss′

]

ψs′ ,

(1)
where ψs(r) and ψ†

s(r) are annihilation and creation op-
erators for electrons having spin projection s along the
ẑ direction, m is the effective electron mass, and µ is
the Fermi energy (~ = 1). The disorder potential U(r)
describes the interaction of electrons with nonmagnetic
impurities and is characterized by the correlation func-
tion:

U(r)U(r′) =
1

2πντ
δ(r − r

′), (2)

where τ is the elastic mean free time and ν is the density
of state at the Fermi level per spin. The upper bar stands
for disorder averaging. The exchange field h(r) acting
on the electron spins may originate, for instance, from
contact interaction between conduction electrons and lo-
calized impurity spins. We do not consider the question
of the microscopic origin of h(r), but restrict ourselves to
setting its statistical properties only. Namely, we take its
average to be spatially uniform: h(r) = h ẑ, with h pro-
portional to the magnetization of the ferromagnet. The
fluctuating part is characterized by correlation functions:

(hα(r) − hα)(hβ(r′) − hβ) =
1

2πντα
m

δαβδ(r − r
′), (3)

for α, β = x, y, z. Here τα
m characterizes mean free time

due to magnetic impurities. In the following, we also
assume rotational symmetry around ẑ, thus τx

m = τy
m.

In order to describe the proximity effect in the fer-
romagnet, it is convenient to introduce thermal Green’s
functions

Gns,n′s′(r, r′, τ) = −〈TτΨns(r, τ)Ψ
†
n′s′(r

′, 0)〉 (4)

in the Nambu(n)-spin(s) space, where Ψ1s = ψs and

Ψ2s = ψ†
−s. The equation of motion for the Matsubara-

transformed disorder-averaged Green’s function, G, is de-
rived from the Hamiltonian (1) and reads:

[

iωn −

(

−
∇

2

2m
− µ− hσz

)

τz − Σ1 − Σ2

]

G = 1̂. (5)

Here, ωn are Matsubara frequencies at temperature T .
The self-energies Σ1 and Σ2 are due to nonmagnetic and

magnetic disorder, respectively. Using Eqs. (2) and (3)
we derive the self-consistent equations for Σ1 and Σ2:

Σ1(r, ωn) = (2πντ)−1τzG(r, r, ωn)τz

Σ2(r, ωn) =
∑

α=x,y,z

(2πντα
m)−1τzSαG(r, r, ωn)Sατz .

Here S = (σx, σy, σzτz), σα and τα are Pauli matrices in
spin and Nambu spaces, respectively.

Now we define the quasiclassical Green’s function

g(r, ωn) =
i

νπ
τzG(r, r, ωn) , (6)

which, in the diffusive limit, obeys the equation

−D∇(g∇g) + [ωnτz − ihτzσz +
∑

α

1

2τα
m

SαgSα, g] = 0,

(7)
with D the diffusion coefficient, and the normalization
condition g2 = 1. Symmetry properties of the Hamilto-
nian further constrain the form of g. Specifically: (i-a)
By the invariance under the rotation around the average
magnetization axis ẑ, we find that g is block diagonal in
spin space; we thus define the two matrices in Nambu
space, g+ and g−, as the two non-vanishing upper and
lower components, respectively. (i-b) From the invari-
ance under the rotation over an angle π around the x̂
(or ŷ) axis and simultaneously change of sign of h, we
find g+(h) = τzg−(−h)τz . (ii) By time-reversal symme-
try, we find g±(r, ωn) = −τzg±(r,−ωn)†τz . Finally the
16 correlation functions introduced in Eq. (4) are not in-
dependent, since the representation is redundant. This
gives: (iv) g+(r, ωn) = −τxg−(r, ωn)∗τx.

Exploiting these properties, we parameterize the com-
plete Green’s function in terms of g+, which in its turn
is completely determined by complex functions, θ and η:

g+ =

(

cos θ sin θeiη

sin θe−iη − cos θ

)

. (8)

Then, Eq. (7) yields:

0 = D∇(sin2 θ∇η) +
2

τx
m

sin θ sin θ∗ sin(η − η∗) (9a)

0 = −D∇2θ +D cos θ sin θ(∇η)2

+2(ωn − ih) sin θ +
2

τz
m

sin θ cos θ

+
2

τx
m

[sin θ cos θ∗ + cos θ sin θ∗ cos(η − η∗)] (9b)

These equations constitute the main analytical result of
our work. Note that in non ferromagnetic superconduc-
tors, symmetry properties (i-b) and (iv) for h = 0 imply
that θ and η are real. Then Eqs. (9) only depend on the
effective magnetic scattering time 1/τm = 1/τz

m + 2/τx
m,
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model order h (meV) 1/hτm ρ (%) RI2 (nV)

1 4.6 9.3 25 1.08

τα
m = 3τm 2 49 1.1 8 0.25

(isotropic) 3 83 0.3 10 0.07

τ z
m = τm 1 15 2.7 12 0.10

τx
m = ∞ 2 61 0.8 0 0.16

(uniaxial) 3 86 0.2 8 0.08

TABLE I: Parameters of the fit (shown in Fig. 1 for the
isotropic case). We took for the sample ∆ = 1.3 meV, D/L2 =
1.13 meV for L = 17 nm, T ∗=1.1 K. ρ = σf/(2σf + γbL) is
the ratio of the barrier resistance to the total resistance R of
the junction in its normal state.

in agreement with Abrikosov-Gor’kov theory for mag-
netic impurities [18]. By contrast, in ferromagnetic su-
perconductors, magnetic disorder can be characterized
by two scattering times: τx

m = τy
m and τz

m [19, 20]. In
Ref. [7] the uniaxial disorder was considered. In our no-
tation this corresponds to τx

m = τy
m = ∞, τz

m = τm. This
hypothesis simplifies greatly the solution of Eq. (9), since
θ and η are no more coupled to θ∗ and η∗. The physical
reason for this simplification is that magnetic scattering
does not couple the spin up and spin down populations.
However it seems more realistic that the magnetic disor-
der is also able to flip the spin of conduction electrons. In
this sense the opposite limit is to consider a completely
isotropic disorder: τx

m = τy
m = τz

m = 3τm. In the fol-
lowing we thus concentrate on this case. We shall also
discuss briefly the uniaxial one for comparison.

In order to determine the Josephson relation, we as-
sume that the ferromagnet is a layer of the length L along
the x̂-axis. We thus need to solve Eqs. (9) with appro-
priate boundary conditions [21] at x = ±L/2:

sin θ∇η = ∓
γb

σf

∆
√

ω2
n + ∆2

sin(η ∓
φ

2
) , (10a)

∇θ = ∓
γb

σf

ωn sin θ − ∆cos θ cos(η ∓ φ
2
)

√

ω2
n + ∆2

.(10b)

Here, σf is the conductivity of the ferromagnet, and γb

is the barrier resistance per unit area at the contacts
(taken to be identical for simplicity) between the ferro-
magnet and the superconducting leads. We also assume
that temperature dependence of the superconducting gap
in the leads, ∆, is simply given by conventional BCS the-
ory. The supercurrent is given by

I =
2πGfLT

e

∑

ωn>0

Re
[

sin2 θ∇η
]

, (11)

where Gf is the conductance of the ferromagnetic metal.
We use now the above equations for fitting the exper-

imental data of Ref. [12, 13]. For a given set of param-
eters, namely the Thouless energy D/L2, ∆(T = 0), T ,

FIG. 1: Fit to experimental data for the critical current
of Ref. [12] (boxes), for the three solutions reported in the
table of the isotropic model. The three solutions gives nearly
indistinguishable curves. Inset: temperature dependence near
T ∗ of the calculated Ic = maxφ(|I(φ)|), I1 (dashed), and I2

(dotted), for the first solution. The minimum of Ic coincides
with I2.

γb, h, τm, we obtain the current-phase relation by solv-
ing numerically the system of differential equations (9)
and calculating the current through Eq. (11). One can
then extract the first two harmonics, I1 and I2. (Higher
harmonics near T ∗ are much smaller than I2). We begin
with the data of Ref. [12], Fig. 2, concerning a sample
with a ferromagnetic layer of L = 17 nm. The length L,
the superconducting gap, and the temperature are known
experimentally. The interface resistance is more difficult
to measure. The authors of Ref. [12] give an estimate of
30% of the total resistance of the junction in its normal
state, R [6].

For a given value of γb one can find the pairs of values
(h, τ) that satisfy the two equations I1(h, τm, T

∗) = 0
and I1(h, τm, T1) = Iexp

1 , where T1 is a temperature dif-
ferent from T ∗ and Iexp

1 is the corresponding experimen-
tal value for I1. We find that only three pairs of val-
ues satisfy this constraint. We order them by increasing
value of h. One can show that the n-th solution refers to
a junction where, as a function of the length of the sam-
ple, other n − 1 zeros are predicted for L < 17 nm. We
optimize then this first estimate of the parameters by in-
cluding γb as a fitting parameter for the full experimental
curve. The solutions are given in Table I. For compari-
son fitting parameters for uniaxial magnetic disorder are
also given.

In all cases we have a good fit to data (see Fig. 1).
Thus, the quality of the fit is not a sufficient criterium
to discriminate between the three possibilities (for each
model). One argument in favor of the first solution (for
isotropic model of magnetic disorder) is the agreement of
the fitting parameter γb with the estimated value in the
experiment. A second one is the dependence of T ∗ on
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FIG. 2: Length dependence at T = 4.2 K of Ic (full line) and
I2 (dashed line) for the parameters obtained with the fit with
the isotropic model. We show the solution 1 (upper panel)
and 2 (lower panel). The zero at L = 17 nm is visible in both
cases. Solution 2 displays a second zero for L < 17 nm.

the length that increases with the order of the solution.
The range of L for which 0 < T ∗ < Tc is about 1 nm for
the first solution, and about 0.4 − 0.3 nm for the second
and third one. The first case compares better with the
experiment [12], where incertitude on L is about 1 nm,
and π-contacts were observed for L = 17 − 19 nm [6].

We consider now the second component, I2.
In Ref. [12] the minimum value of RI2 is 0.5 nV, and it

falls between the first and the second predicted value for
isotropic model (cf. Tab. I). In both cases we thus find
that the amplitude of the second harmonics is compatible
with the observed one. We also find a strong temperature
dependence of I2, the values presented in the table at
T ∗ = 1.1 K, are reduced by a factor 10 at 5 K. This
dependence can explain the much smaller value for RI2
observed in the 19 nm sample of Ref. [12]. In comparison,
the uniaxial model gives a much smaller value for RI2 ≈
0.1 nV for all three solutions.

We repeated the fitting procedure on the data of Frolov
et al. [13], where no second harmonics is observed at
T ∗. We found again that the data can be compatible
with either a second or a first zero, but in both cases
RI2 < 10−10 mV, thus below the observation threshold.

We finally discuss the length dependence of the first
and second harmonics for the fitted values of the pa-
rameters (see Fig. 2). As anticipated, I1(L) displays an
oscillating behavior. One can clearly see in Fig. 2 that I1
for solution 1 and 2 vanishes once and twice, respectively,
for L ≤ 17 nm (solution 3 is not shown). A more unex-
pected result is the oscillatory behavior for I2(L), that
shows a remarkable doubled periodicity with respect to
I1(L): Between two zeros of the first harmonics we al-

ways observed two zeros of the second harmonics. This
means that the sign of I2 remains always positive when
I1 vanishes. Therefore we find that the transition from

0- to π-contact is always discontinuous. We cannot rule
out, however, that I2 may be negative at T ∗ in some
other region of the parameters space. This would imply
that the transition from 0 to π-contact is continuous as
a function of the temperature [3].

In conclusion, we have presented a development of
the quasiclassical theory of superconductivity taking into
account magnetic scattering in the presence of an ex-
change field. We have used our model to extract the
exchange field and scattering times from the tempera-
ture dependence of the critical current in superconduc-
tor/ferromagnet/superconductor junctions. With these
parameters we have calculated the second harmonics at
the vanishing value of the first component which agree
favorably with the experimental findings.

Note added: after the completion of this work we be-
came aware of related work by A. Buzdin [22] where I2
is calculated near the critical temperature.

We are pleased to thank A. Buzdin for illuminating
and important discussions. This work was supported in
part by the U.S. Department of Energy office of Science
under the contract W-31-109-Eng-38.
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