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Formation of nanoscale pore arrays
during anodization of aluminum
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Abstract. – A theory of the spontaneous formation of spatially regular hexagonal arrays of
nanopores in aluminum oxide film growing during aluminum anodization is presented. Linear
stability analysis shows that, in certain ranges of the applied voltage and electrolyte pH, the
oxide film is unstable with respect to perturbations with a well-defined wavelength. The insta-
bility is caused by a positive feedback between the oxidation-dissolution rates and variations of
electric field caused by perturbations of the metal-oxide and oxide-electrolyte interfaces. The
competition between this instability and the stabilizing effects of the Laplace pressure and
elastic stress provides the wavelength selection mechanism. The hexagonal ordering of pores
results from the resonant quadratic nonlinear interaction of unstable modes.

Spatially regular, hexagonally ordered arrays of nanoscale pores in aluminum oxide can be
formed by the anodization of aluminum in acidic electrolytes [1–3]. Nanoporous alumina has
attracted renewed attention lately as a promising material for the fabrication of new magnetic
storage devices, catalytic membranes, and as an inexpensive template for the production of
nanoscale particles, wires, and photonic crystals [4].

Despite many experimental studies and general understanding of the pore growth mecha-
nism to be associated with electric-field–assisted dissolution of aluminum oxide, the mechanism
of self-organization of regular pore arrays is not understood. A model for the steady growth
of a single pore, based on the field-assisted dissolution, was proposed in [5]. A similar model
was considered in [6] and a long-wave linear stability analysis of the interfaces was performed.
It can be shown, however, that the model studied in [6] does not provide a physically justified
short-wave cutoff and hence a regularization mechanism needs to be identified that would
explain the selection of the pore diameter and interpore spacing. One such mechanism is the
dependence of the activation energies of the interfacial reactions on the Laplace pressure at the
curved interfaces due to surface energy [7]. An additional important factor may be the elastic
stress caused by the volume expansion in the course of the Al → Al2O3 reaction [8]. The
presence of elastic stress can significantly affect the morphological stability of the surface [9].
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Fig. 1 – Interfaces at the aluminum anode.

In this letter, we propose a theory for the formation of regular and irregular arrays of
nanopores in aluminum oxide during the anodization of aluminum. We show that a nonlinear
dependence of the surface current on the overpotential and a dependence of the activation
energies on the Laplace pressure and elastic stress can explain the formation of both irregular
and hexagonally ordered pore arrays.

Consider an electrolytic cell with an aluminum anode and acidic electrolyte. A constant
voltage V is applied across the cell and the resulting electrochemical reaction creates a layer of
aluminum oxide on the surface of the aluminum electrode. It is generally accepted that, once
formed, the oxide layer grows due to the oxidation reaction sustained by the electromigration
of oxygen and hydroxyl ions through the existing layer to the metal-oxide interface [10]. At
the same time, dissolution of the oxide occurs at the oxide-electrolyte interface.

The positions of the metal-oxide and oxide-electrolyte interfaces are represented by ξ1(x, t)
and ξ2(x, t), respectively, as shown schematically in fig. 1. Since the conductivities of the alu-
minum and electrolyte are much larger than that of the oxide, we assume the main part of
the voltage drop to occur in the oxide layer. We assume also that the conductivity of the
oxide is constant and therefore the conservation of charge there is described by the Laplace
equation for the electric potential ϕ(x, z, t). The potential from the metal side of the metal-
oxide interface is fixed at V , and the potential from the electrolyte side of the oxide-electrolyte
interface is fixed at zero. We neglect the perturbation of the electric field due to ion migration
as well as the effect of the electric double layer at the metal-oxide interface. At the oxide-
electrolyte interface, however, the double layer induces a jump in the potential across the
interface. The electric current across the interface (sustained by oxygen or hydroxyl ions pro-
duced in interfacial reactions) depends exponentially on this potential jump, as prescribed by
the Butler-Volmer relation [11]. Thus, the dynamics of the metal-oxide and oxide-electrolyte
interfaces can be described as follows:

∇2ϕ = 0, ξ1(x, t) < z < ξ2(x, t); (1)
z = ξ1 : ϕ = V, (2)

v(1)
n = aσ∂nϕ; (3)

z = ξ2 : −σ∂nϕ = k+e
αϕ − k−e−αϕ, (4)

v(2)
n = −b+k+e

αϕ + b−k−e−αϕ. (5)

Here v(1,2)
n are the normal velocities of the metal-oxide and oxide-electrolyte interfaces, σ is

the conductivity of the oxide, k± are kinetic coefficients characterizing the interfacial current
of oxygen or hydroxyl ions produced in the oxide dissolution reaction at the oxide-electrolyte

Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2005-10039-9

http://www.edpsciences.org/epl
http://dx.doi.org/10.1209/epl/i2005-10039-9


838 EUROPHYSICS LETTERS

0 0.02 0.04 0.06 0.08 0.1
�6
�4
�2

0
2
4

q (nm−1)

ω
(h
r−

1
)

Fig. 2 – Typical dispersion curves showing the unstable modes in the absence (dashed line) and in
the presence (solid line) of the elastic stress. The parameters for both lines are the same (see text),
except that for the dashed line, s±ij = 0, γ+ = −10.94Nm−1, and γ− = 7.29Nm−1.

interface, and a and b± are Faradaic coefficients relating the rate of the interface motion to
the interfacial current. The constant α = qe/(2kBT ), where qe is the electron charge, kB

is the Boltzmann constant, T is the absolute temperature, and 1/2 is the symmetry factor,
assumed equal for the forward and reverse reactions [11]. The activation energies of the
oxide-electrolyte interfacial reactions depend on the Laplace pressure and elastic stress,

k± = k◦± exp
[

1
ρkBT

(
γ±κ+ s±ijσij

)]
, (6)

where ρ is the number density of the oxide, κ is the curvature of the interface, and σij is
the stress tensor evaluated at the oxide-electrolyte interface. The activation surface energies
(activation energy per unit area) γ± = ρ(∂E±

a /∂κ), where E±
a are the activation energies

of the forward (+) and reverse (−) reactions, γ+ < 0, γ− > 0. Similarly, the activation
strains, s±ij = ρ(∂E±

a /∂σij), measure the dependence of the activation energies on the elastic
stresses [9]. The “chemical” factor of the oxide dissolution rate, k◦+, depends on the pH,
k◦+ = k̄◦+10

−pH [5].
Consider the growth of a planar oxide layer with thickness l(t) = ξ2(t)−ξ1(t). The solution

of (1) for planar interfaces is ϕ0(t) = V −E(t)[z − ξ1(t)], where E(t) is the electric field. The
boundary conditions (2)-(5) give a system of equations for E and l,

σE = k+e
α(V −El) − k−e−α(V −El),

dl
dt

= aσE − b+k+e
α(V −El) + b−k−e−α(V −El).

This system has the stationary solution

Es = σ−1
√
k+k−(r − r−1), r =

√
a− b−
a− b+

, (7)

ls =
σ√
k+k−

V − α−1 ln(r
√
k−/k+)

r − r−1
. (8)

The solution (7)-(8) exists only for real r > 1 and describes a planar oxide layer uniformly
propagating with velocity vs = −aσEs; we consider it as the basic state. For typical parameter
values [1, 3, 10]: V = 50V, α = 15.56V−1, σ = 5 × 10−9 Am−1 V−1, k̄◦+ = k◦− = 20Am−2,
pH = 0, a = 1.04 × 10−10 m3 C−1, b+ = 5.18 × 10−11 m3 C−1, b− = 2.59 × 10−11 m3 C−1,
s±ij = 0, one obtains ls = 30nm and vs = −1 nm s−1.

We now study the stability of the oxide layer in the basic state. First, consider the case
when the activation energies of the interfacial reactions do not depend on stress, i.e. we set

Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2005-10039-9

http://www.edpsciences.org/epl
http://dx.doi.org/10.1209/epl/i2005-10039-9


G. K. Singh et al.: Formation of nanoscale pore arrays etc. 839

s±ij = 0 in (6). For infinitesimal perturbations of the basic state solution, G−G0 = G1e
iq·x+ωt,

where G = {ϕ, ξ1,2}, the linearized system (1)-(5) yields the dispersion relation ω(q) in the
form ω2 + f1(q)ω + f2(q) = 0, where f1,2 depend also on the physical parameters. The two
roots of this quadratic equation describe two modes, ω1,2(q). The presence of the Goldstone
mode, ω1(0) = 0, indicates the translation symmetry of the problem. If ω2(0) > 0, the basic
state of the oxide layer is unstable with respect to spatially uniform perturbations: the planar
oxide layer will shrink or expand. If ω2(0) < 0, it can be shown that ω2(q) < 0 for all q
and the oxide layer can become unstable only with respect to spatially periodic perturbations
corresponding to ω1(q) > 0. The dispersion curve ω1(q) is shown in fig. 2 by the dashed line.
It is therefore the competition between the destabilizing effect of the electric-field–dependent
chemical reactions and the stabilizing effect of the surface energy (dependence of the activation
energy on the Laplace pressure) that determines the wavelength selection. We see that the
most rapidly growing mode has, in this particular case, the wavelength λmax ≈ 300 nm which
is in the range of typically observed values of the pore diameter and interpore spacing [3].
Near the instability threshold, one finds ω1(q) = a1q

2 − a2q
4, where a1,2 > 0 are functions

of the physical parameters. For the interface perturbations, a multiple-scales analysis near
the instability threshold yields ξ̃1,2 = h(x, t), where h(x, t) is governed by the Kuramoto-
Sivashinsky (KS) equation, ht +a1∇2h+a2∇4h− vs

2 (∇h)2 = 0. Solutions of the KS equation
are known to have the form of spatio-temporally chaotic cells, splitting and merging, and
having well-defined average size [12]. In fact, spatially irregular porous structures are often
observed during the anodization of aluminum [3], titanium [13] and tin [14]. However, in
order to explain the formation of spatially regular, hexagonal arrays of pores, some additional
mechanism is needed that would produce a short-wave instability.

We propose that the elastic stress dependence of the activation energy of the dissolu-
tion reactions at the oxide-electrolyte interface can damp the long-wave perturbations and
yield a short-wave instability. The volume expansion due to the oxidation reaction creates
stress resulting from the contact between the metal and the amorphous oxide with different
intermolecular distances. Such stress can be modeled analogously to the stress in epitaxial
crystalline films [15]. Thus we consider now s±ij 	= 0 in (6) and, in addition to (1)-(5), solve the
equations of mechanical equilibrium, ∂jσ

m,o
ij = 0, in both the metal substrate −∞ < z < ξ1,

and the oxide layer ξ1 < z < ξ2, denoted by the superscripts m and o, respectively. The
boundary conditions are

z = ξ1 : um = uo,
(
σm

ij − σo
ij

)
n

(1)
j = 0;

z = ξ2 : σo
ijn

(2)
j = 0;

and um → 0 as z → −∞. Here u is the displacement vector, n(1,2)
j are the normal vectors

of the metal-oxide and oxide-electrolyte interfaces, and σij is the stress tensor, related to the
strain tensor, uij = (1/2)(∂iuj + ∂jui), by the following stress-strain relations in the metal
and oxide [15,16]:

σm
ij = 2µm

[
um

ij +
(

νm

1− 2νm

)
δiju

m
kk

]
,

σo
ij = 2µo

[
uo

ij +
(

νo

1− 2νo

)
δiju

o
kk −

(
1 + νo

1− 2νo

)
ηδij

]
.

Here µ is the shear modulus, ν is the Poisson ratio, δij is the Kronecker symbol, η is the
metal-oxide misfit strain associated with the aluminum oxide volume expansion υ = (V o −
V m)/V m = 2η, and the metal substrate is chosen as the reference state. The basic state
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Fig. 3 – Dependence of the wavelength of the most rapidly growing mode above the instability
threshold on (a) the applied voltage; (b) the electrolyte pH; (c) the basic state oxide thickness ls. All
other parameters are as given in the text. (d) shows the dependence of λmax on the characteristic
stress length, ζ, at the instability threshold (as computed in fig. 4).

solution of the elasticity problem is an undeformed metal substrate, um
0 = σm

ij = 0, supporting
a strained planar oxide layer, uo

0 = (0, 0, zuo
zz), where u

o
zz = [(1+ νo)/(1− νo)]η and the only

nonzero components of the stress tensor are σo
xx = σo

yy = −2µouo
zz. The basic state stress in

the oxide renormalizes the kinetic coefficients k± in (6).
We now examine the stability of the basic state. Consider perturbations of the displace-

ment fields, u − u0 = u1(z)eiq·x+ωt, linearize the elastic problem, and combine with the
linearized system (1)-(5) to obtain the quadratic dispersion relation, ω2 + g1(q)ω+ g2(q) = 0,
where g1 and g2 are functions of s±ij and η, as well as the elastic constants and other phys-
ical parameters. Taking the typical parameter values mentioned above, as well as [17]:
µm = 2.63×1010 Nm−2, µo = 1.31×1011 Nm−2, η = 0.2, νm = νo = 0.33, ρ = 2.36×1028 m−3,
T = 373K, and estimating [7, 9]: s+xx = s+yy = 1.02 × 10−3, s−xx = s−yy = −6.47 × 10−4,
γ+ = −7.88Nm−1, γ− = 7.22Nm−1, we find that one mode is stable, and the dispersion
curve for the other mode is presented in fig. 2 by the solid line. The unstable mode yields
a short-wave instability with the maximum growth rate at the wavelength λmax ≈ 100 nm,
which is consistent with experimental measurements of the pore diameter and interpore spac-
ing [3]. The perturbations of the metal-oxide and oxide-electrolyte interfaces are in phase,
also in agreement with experimental observations. Thus, the dependence of the interfacial ki-
netics on the elastic stress can damp the long-wave perturbations and shift the unstable mode
from a long-wave instability with chaotic dynamics to a short-wave instability that occurs at
a nonzero wavenumber. The wavenumber selection is the result of the competition between
the destabilizing effect of the electrochemical reactions and the stabilizing effect of the elastic
stress. It is important to note that the stabilizing effect of the elastic stress is always dominant
for the long-wave modes and therefore the instability occurs only for a finite wave number.
Such an instability is known to result in spatially regular hexagonal patterns [12].

Figure 3(a) shows the dependence of λmax on the applied voltage above the instability
threshold. The wavelength increase with the voltage is in accordance with experiments [1, 3, 5].
Figure 3(b) shows the increase of λmax with the electrolyte pH, which is also confirmed by
experimental measurements [5,6]. The scaling of λmax with the basic state oxide thickness, ls,
and the characteristic stress length, ζ = υls, is displayed in figs. 3(c) and (d), respectively. One
can see that λmax (pore diameter) increases with ls that, in turn, increases with the applied
voltage (see (8)). One can also see that λmax almost linearly depends on the elastic stress
length. Figure 4 presents a “phase diagram” in the plane of the applied voltage and volume
expansion. We observe that the short-wave instability occurs in a rather limited range of the
volume expansion. This agrees with experimental observations that the hexagonal ordering
of pores occurs in a narrow range of the aluminum oxide volume expansion [8].
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Fig. 4 – Phase diagram in the applied voltage and volume expansion. s+
xx = s+

yy = 4.36 × 10−4,
s−xx = s−yy = −2.76 × 10−4, γ+ = −10.94Nm−1, γ− = 7.29Nm−1, and all other parameters are as
given in the text.

In order to demonstrate the possibility of the formation of hexagonal pore arrays, we
numerically solve the following model nonlinear evolution equations for the positions of the
interfaces ξ1,2:

∂tξ1 = L11ξ1 + L12ξ2 + ψ1(ξ1 − ξ2), (9)
∂tξ2 = L21ξ1 + L22ξ2 + ψ2(ξ1 − ξ2). (10)

Here Lij are integro-differential operators derived from the linear stability problem, such
that the corresponding Fourier transforms, L̂ij(q), are the components of the linear evolution
matrix in Fourier space that are related to the coefficients of the dispersion relation by L̂11 +
L̂22 = −g1(q), L̂11L̂22 − L̂12L̂21 = g2(q), and the functions ψ1,2 represent nonlinearities. Due
to the translation invariance, the functions ψ1,2 depend on ξ1 − ξ2 and are chosen to be in the
generic polynomial form ψ1,2 = α1,2(ξ1 − ξ2)2 + β1,2(ξ1 − ξ2)3.

A selected result of the numerical solution of the system (9)-(10) by a pseudospectral
method, with small random noise initial conditions, is given in fig. 5. After some transient be-
havior the pattern evolves toward a hexagonal lattice, see fig. 5. The lattice initially contains
many defects that slowly anneal. As in experiment, the interfaces are in phase, and the modu-
lation of the oxide-electrolyte interface is always larger than that of the metal-oxide interface.

In conclusion, we have developed a theory of the formation of pore arrays during anodiza-
tion of aluminum. We have shown that the strong dependence of the electric current on the
overpotential leads to the instability of a planar oxide layer that, in combination with the

Fig. 5 – Gray-scale representation of the height of the oxide-electrolyte interface for the typical
parameter values.
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dependence of the activation energy on the Laplace pressure, yields the wavelength selection.
The instability is long wave in this case, and near the threshold it is described by the KS
equation whose solutions exhibit spatio-temporal chaos. This mechanism can explain the for-
mation of irregular arrays of pores in alumina, as well as in the oxides of other valve metals
produced by anodization. The spontaneous ordering of pores in hexagonal arrays is attributed
to the change of the instability type from long wave (with zero wave number at threshold) to
short wave (with nonzero wave number at threshold); the latter is known to produce hexag-
onal patterns due to the resonant quadratic interaction between unstable modes [12]. The
transition from the long-wave to short-wave instability is caused by the effect of elastic stress
that damps the long-wave perturbations. Note that our analysis is weakly nonlinear, while
the deep pores cannot be treated as small perturbations of planar interfaces. Fully nonlinear
treatment will be necessary to describe the growth of deep pores.
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