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We derive a general quasiclassical approach for long-range magnetic-field quantization effects in supercon-
ductors. The method is applied to supercldamave superconductors in the mixed state for delocalized states
with energiese>A,H/H,. We find that the energy spectrum consists of narrow energy bands whose centers
are located at the Landau levels calculated in the absence of the vortex potential. We show that transitions
between the states belonging to the different Landau levels can be observed experimentally due to resonances
in the ac vortex friction.

[. INTRODUCTION However, these bands in the quasiclassical limit are rather
narrow; their centers are located at the Landau levels calcu-
The unusual behavior of the thermodynamic and transpotated in Refs. 10—12. We thus demonstrate that the picture of
properties ofd-wave superconductors as functions of mag-the energy spectrum is in fact a compromise between the two
netic field has been the subject of extensive experimental arabove-mentioned extremes. We emphasize that both the qua-
theoretical studies. This behavior is attributed to nontrivialsiclassical assumptign:£>1 and the high-energy condition
energy dependence of the electronic density of statemd  e>A,/H/H, are crucial for our results to hold. Because of
to specific kinetic processes which are very sensitive to than increasing role of the periodic vortex potential, the states
fine details of electronic states brought about by the presenagith lower energies deviate strongly from the Landau-level
of vortices®™® There exists, however, a conceptual contro-picture and resemble more the band structure of a solid ob-
versy about the structure of the electronic spectrum intained within the tight-binding approximation. We note also
d-wave superconductors in the mixed state. One of the viewthat the results of numerical solutions of the Bogoliubov—de
is that the states below the maximum gigphave a discrete Gennes equations of Refs. 15 and 16 cannot be directly com-
spectrum due to Andreev reflections; some states are locgbared with our analytical results because the calculations in
ized within vortex coré®® while others are quantized at these works were done for conditions where at least one of
longer distancéd™'? as a particle which moves along a our basic assumptions is not fulfilled.
curved trajectory in a magnetic field hits the gap for a current In this paper we restrict ourselves to a more qualitative
momentum direction where the energy becomes equal tanalysis and concentrate on situations where the exact band
|Ap|. Other authors propose that instead of the magnetistructure of the electronic states is not essential, leaving the
guantization, energy bands appear in a periodic vortex poterdetailed numerical solution of our equations for a forthcom-
tial due to the vortex lattic&~1° ing publication. In Sec. V, we demonstrate that the obtained
In the present paper we develop a general quasiclassicehndau-level structure of electronic states is important for
approach for calculating the long-range magnetic-field quanunderstanding dynamic and transport properties-efave
tization effects in superconductors in the regime where thguperconductors in a wide temperature range/H/H,
electron wavelength is much shorter than the coherenceeT<T,. We consider effects of the energy spectrum on the
length peé>1. The proposed method is applied to super-vortex dynamics which can be accessed by magneto-optical
cleand-wave superconductors in the mixed state in the low-experiments in the far-infrared regicicompare with Ref.
field limit H<H.,. We show in Secs. lI-IV that the influ- 17). We show that the vortex friction for oscillating vortices
ence of a magnetic field on delocalized excitations in adisplays resonances at transitions between the states belong-
superconductor is not reduced to simply the action of aring to different Landau levels.
effective vortex lattice potential. The effect of magnetic field
is rather twofold:(i) It creates vortices and thus provides a
periodic potential for electronic excitatior(d.) It also affects
the long-range motion of quasiparticles in a manner similar We start with the standard Bogoliubov—de Gennes equa-
to that in the normal state. The long-range effects are lesgons
pronounced for low-energy excitations. On the contrary, the
spectrum of excitations with energieszAyyH/H,, is de- H e )2 )
P——-A| —PE

Il. LONG-RANGE EFFECTS OF THE MAGNETIC FIELD

termined mostly by long-distance motion and exhibits mag- u+2mA g =2meu,
netic quantization. We study the delocalized states with en-
ergiese>Ay\H/H;, and calculate their energy spectrum.

We find that the spectrum consists of energy bands as one

would indeed expect to be the case for a periodic potential.

2
2
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p+ SA v—2mA3u=—2mev, )
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Whereﬁ: —iV is the canonical momentum operator. Equa_(4), however, is not dangerOUS if partides are bound to dis-
tions (1) have particle-hole symmetry such thatsv*,p  tances of the order of few unit cells because the phase gra-
— —Uu* under Comp|ex Conjugation and— — €. For a vor- dient is IImIted|V)(|<p,:, in other WOI’dS, the Lorentz force

tex array, the order parameter phase is a multiple-valuefloes not affect the trajectory considerably. However, for a
function defined through vortex array, the phase gradient can reach values comparable

with pg.

To avoid these complications we use here another trans-
formation which also removes the coordinate dependence of
the order parameter phase. The results, of course, should be
As a result independent of the choice of transformation due to the gauge

invariance. Following Refs. 11 and 14 we put in Eb)

curlV =2, 278(r—r,). 2

VX_E—'F () u=u’, v=exp—ix)v'. (5)

such that, on averag,y~eHr/c for larger. This is a single-valued transformation. We obtain
Consider a quasiparticle in a magnetic field in the pres-

ence of a vortex lattice for energies above the gap at infinity.

If the particle mean free path is longer than the Larmor ra- R _

dius, i.e.,o.7>1 wherew, is the cyclotron frequency, such [(Py—2mvg)?—pElv’ —2meXA%, u'=—2mev’, (7)

a particle can travel away from each vortex up to distances of ’

the order of the Larmor radiug =vg/w.. This brings new whereP, =p—(e/c)A is the operator of the particle kinetic

features to Eqs(l). Assume for a moment thé&t=0. Then momentum, and

the wave functioru describes a particle with kinetic momen-

tum P, =p— (e/c)A and energy= P2 /2m—Eg while v de- P, =p-Vx/2=P, —mv;.

scribes a hole with kinetic momentuf. =p+ (e/c)A and

energy e=E-—P2/2m. A particle and a hole which start

propagating from the same point will then move in different 2e

directions and along different trajectories which transform 2mvg=Vy— —A.

one into another under the transformatieini-—H. For a ¢

finite order parameter the wave function is a linear combinatn Egs. (6) and (7) we use that, for a general pairing sym-

tion of a particle and a hole. It is not convenient, however, tometry,A,;,ocuv* depends actually op’ = (p,+ p,)/2 where

use such a combination at distances where the trajectories af . :
the particle and the hole go far apart, i.e., when ihe vectoE”'” are the canonical momentum operators which act on the
Y ogoliubov wave functionsi andv, respectively. The term

Fuor;egtlal is no longer small compared to the Fermi momen-_ V x/2 appears in the order parameter together with the ca-

F . 1 -

Equation(1) shows that the phase ofdiffers from that of nonical mome_nthrrp because only one half of the momen
tum operator iM;, acts on each of the wave functionor

v by the order parameter phage To construct a proper P

basis, one needs to bring the phases ahdv in correspon-

dence with each other. We note that the usual transformation The trar_wsformauon of Eq5) IS U like;” it brings the
phase ofv in correspondence with the phasewfEquation

(u) ( e ) § (a) (5) defines the particlelike basis; within it, E7) describes

[I5§—p'é]u’+2me*iXAﬁ>r+v’=2meu’, (6)

The superconducting velocity is

= (4)  the motion of a hole as it is seen by a particle. Note that, as
distinct from Eq.(1), a particle and a hole determined by
Egs. (6) and (7) for A=0 move along the same trajectory

v *I)(/Zl;

e v

which leads to a substitution oA with —(mcde)vg=A houah. of in diff directi
—(c/2e)Vy in Eq. (1), is not convenient when considering at ough, of course, in different directions.

particle which can move at distances much larger than the The resulting equations are not symmetric with respect to
size of one unit cell. Though it accounts correctly for the" andv: _thg terr_nvs_ is present in the .second. equat|on_ to-
phase difference betweem and v, it introduces an extra gether withP while it does not appear in the first equation.

overall phase* y/2 into the new wave functiogy as com- Let us perform one more transformation

pared to the initial particléor hole basis; see the discussion u’ u.\ .
later in this section. This overall phase increases with dis- ( ,) = )e'xu/2, (8)
tance and is equivalent to a gauge transformation to a “ro- v Vi

tating frame™ where the magnetic field drops outwfbe-  \whereVy,=2mv, such that

cause cung vanishes on average but a Coriolise., the

Lorent force appears instedfti(see also Sec. V Math- 2e
ematically it follows from the fact that the transformation CU”VXv:Z 2mo(r—ri)———H
e'¥? is singular, ¥;V,—VV,)x#0, i.e., from Eq.(2). It

means that the momentum in the new frame is not an integrand x, = x — xa Where

of motion even in absence of the vortex potential associated

with the superconducting velocity and spatial variations of 2e

the order parameter magnitude. The transformation of Eq. VXA:?A' ©
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The “phase” x, is not single valued within each unit cell; it where

depends on the particular path of integration. However, it is
single valued on average, i.e., on a scale much larger than the

intervortex distance since

J curlV x,d?r=0.

e \?
(p— EA) =pZ, (17
and ¢ is a slow function which varies over distances of the
order of §. This approximation works ipgé>1. We shall
call it the first-level quasiclassical approximation. It is ex-

It also implies tha¥ , does not have large terms increasing e cted to be valid for most superconductors. Of course, its

with distance. The transformation, E@®), is thus not dan-
gerous. The total transformation, Ed$) and (8), has the
form

u=exp(ix/2—ixal2)U .,

v=exp —ix/2—ixal2)V, .

With this transformation we finally obtain

(10

[(Py+mv)?—pZlU. +2mAs V. =2meU,, (11)

[(Py—mvg)2—pE]V,—2mAp U,=—-2meV,, (12
where

*

Ko —amiXA - i
Ap =€ A5 (ei)a=€ AL (ggya

Another equation can be obtained using the transforma:

tion
u=e'Xe 2y _=exp(iy/2+ixal2)U_,
v=e X2V _=exp(—ix/2+ixal2)V_ . (13

We get

[(P_+mvg)?—p2lU_+2mAs V_=2meU_, (14

[(P_—mvg)?—pZ]V_—2mAp U_=—-2meV_, (15

where P_=p+ (e/c)A is the “hole” kinetic momentum.
The transformation, Eq13), is “v-like;” it brings the phase
of u in correspondence with that of Equation(13) defines
the holelike basis such that E(l4) describes motion of a

accuracy is not very good for those high-materials which
havepg£ not considerably larger than unity.
If div A=0, we have

P (—iV+mvs) ¢+ mzmd’z:mﬂf’l:

P (—iV—mve)—mAp ¢1=—medp,.  (18)

Using Eq.(16) we can transform Eqg14) and(15) to their
first-level quasiclassical version which is Ed8) whereP,,

is substituted byP_ under the conditiofP_|?=pZ. Equa-
tion (18) and itsv-like analog possess particle-hole symme-
try. Under the transformation

b1— ¢§ ypo— — ¢’1c )

they go one into another. Moreover, each set of equations
has particle-hole symmetry separately for a given position on

P——pPe——¢

the trajectory if the kinetic momentR.=p= (e/c)A are
reversed for a fixed position of the particle. Due to EL),
p—(e/c)A=(qcose, gsina), wherea is the local direction
of the momentum. The reversal correspondste 7+ a.

We take thez axis along the magnetic field. To solve Eq.
(18) we define the quasiclassical particlelike trajectory by

dX_ Pix _ Px— (e/C)Ay

o B 19
dy” P., P, (elOA, (19

When the magnetic-flied penetration length is much longer
than the distance between vortices,>a,, the magnetic
field can be considered homogeneous. WAthiaken in the
Landau gauge,

A=(—Hy,0,0), (20)

particle as seen by a hole. Again, both particles and holethe trajectory is a circle:

with A=0 move along the same trajectory.
Note that the vector wave function

T
+= v,

defined by Eq(10) differs from ¢ in Eq. (4) by an additional
overall phaseg=e X#2 _ It is exactly of the same ori-
gin as the extra phase present/iras compared to the initial

particlelike basis. One can say that the transformafi®n
“removes” the magnetic field while the phaseyx/2 “re-
stores” it. Similarly, the phaser x,/2 in Eq. (13) restores
the magnetic field in the holelike basis.

One can transform Eq$11) and(12) further by putting

\If+=exr<ifp-dr)gvzs, Zi)z(ii) (16)

(X—X)?+ (y+cpy/eH)?=(p,cleH)?, (21)

where p? =pZ—p2. The local direction of the kinetic mo-
mentum isp,+eHy/c=p, sina, py=p, cosa. The distance
along the trajectory isls=r da where the Larmor radius is
r.=p, /mo.. Equation(18) can now be written in terms of
the quasiclassical trajectory E(L.9). We have

b1+A(a)dy=€dy,

. d
—i—+m
Uy Js Ut

Jd ~
UL(_ig_mvt)d’z_A(a)(f’l:_E(ﬁZ (22

Herev, =p, /m, andv, is the projection ofvg on the local

direction of the trajectoryA («) anduv, are functions of co-
ordinatesx(s), y(s) and of the anglex(s) taken at the tra-
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jectory. Equations(22) look exactly as the quasiclassical the particle after being Andreev reflected transforms into a
Bogoliubov—de Gennes equations obtained using the tran&ole which returns to the starting point along the same tra-
formation, Eq.(4), with the important difference that the jectory. Using the substitution sik¥(Ay/€)sin(2a) we find
trajectory is now a circle rather than a straight line.
f ‘da/e2— AZsirA(2a)
0
. A €

We take the order parameter ihwave superconductors =5 E AT 1-—
in the form A,=Aq(2p,py)/(pz+p7) SO that Ay (eo)a 0 Ao
=Agsin(2z). Consider first the limitvs=0 andAy=const.  whereK (k) andE(k) are the full elliptic integrals of the first

Equations(22) become and second kinds, respectively. Applying the Bohr-
Sommerfeld quantization rule, ER3), we obtain

E En) 1 Eﬁ K( 6n>
Ao A2 Ao

These states are degenerate with the same degree as in the
normal state: for each, there are®/2d,=N,/2 states for
particles andN,/2 states for holes, whex® is the total mag-

Ill. ELECTRONIC STATES IN ZERO LATTICE
POTENTIAL
62

K €
Ao

. dgy :
_|wC%+Aos|m2a)¢2:E¢l, ZAO

We

—2mn. (25

. 0P :
[ wcT; +ASIN2a)dp1=€d,.

These equations can be solved witheerond-leveuasiclas-

sical ansatz netic flux through the superconductor, aNg is the total
o ) number of vortices.
¢=Cexdif(a)]. Considere<A . Expanding in smalk
We obtain
Ek—quk2 Kk—Trl-i-k2
K=51=7] KR=3 ik

d
f(a)=ij—a\/62—Aozsinz(2a).
@e we find from Eq.(25)

The quantization rule also includes the integral over the .
momentump defined by Eqgs(16) and(17). We have €n=* V4w n. (26)

Equation(26) agrees with the result of Refs. 10 and 11.

da
39 pdr= § —\Je?—AjsirP(2a)=2mn. (23
We B. Extended states

This second-level quasiclassical approximation is less gen- |f |¢|>A,, we get for the Landau gauge, EO), p,
eral as compared to the first-level approximation: In addition— ¢onst and

to the conditionpgé>1, it also requires that the quantum

numbersn>1 be larget® The + signs distinguish between

particles and holes. As was already mentioned, a particle fﬁpdf: é pydy
[with the plus sign in Eq(23)] and a hole(with the minus

sign) move along the same trajectory, EQ1), but in the o[V = >
opposite directions. The phage which was introduced in =2 v VP —(pyteHylc)*dy
Egs. (8) and (10) gives a contribution to the action of the

order of 2 because it is limited from above by an increment = Trcpf/eH.

of the order of circulation around one vortex unit cell; it can

thus be neglected for large The turning pointsy; , correspond to the values of Larmor

radius wherep,+eHy, ,/c=*p, . The corresponding tra-
A Sub at jectory is a closed circle where varies by 2r. The second
- =ubgap states integral in Eq.(23) gives

In the rangele| <A, the turning points correspond to a

vanishing of the square root at=* «, where sin(2,) em d_a\/z_z—._ﬁ ﬂ
~|el/Ao. We have o o Ve A03|n2(2a)—ch ll (27)
4 f(a. The quantization rulg¢23) yields
= “da = AZsit(2a) =27, (24 q @3y
WcJo 2
+26nE Ap _ Pz E 28
wheren>0. The first integral in Eq(23) disappears because T e =+ om —F (28)

the turning points of the momentumare not reached: the ) )
particle cannot go far along the trajectory, Ef9), and re- For ans-wave superconductor we get, in particular,
mains localized on a given trajectory at distances B

~r (e/Ay) smaller than the Larmor radius . Note also + [2_A2_ n Pz
that the contribution fromy, vanishes identically because =Ven—Ao=wn 2m Br- 9
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IV. EFFECTS OF THE PERIODIC POTENTIAL When deriving these expressions we have used the periodic-

ity of vg and the fact that the trajectory dependsyoanly

throughy+cp,/eH. The turning pointy, is thus shifted by
At low magnetic fieldsH<H.,, one can consider that the |b, whenp, is shifted by—eHIb,/c.

particle trajectory always passes far from cores. The oscillat- The functions, Eq.(31), can be used to construct two

ing part of the vortex potential comes mostly from the superindependent basis functions

conducting velocity. The corresponding Doppler enetgy

=p, v, is of the order ofA,H/H,. This periodic potential . . - .

transforms the discrete energy spectrum into energy bands. d)rf(kx,ky;x,y)zzl: e'yPoTy(21b0) Wn(ky;X,Y),

Equations(12) and (15) or the quasiclassical version, Eq. (34)

(18), are invariant under the magnetic translations by periods

of the regular vortex lattice. Consider the particlelike equa-

tions (12) or (18). The particlelike operator of magnetic D (ky ky sx,y) =2 eRy@FD00T [(2]41)bg]

translations in a homogeneous fiel@is !

A. Bloch functions

. . e XW (K %,Y), (39
T(R|)=exr{—iR| p+-Al|, (30 ) . _ _
c with even and odd translations, respectively. Starting from
N _ _ Eq. (34) we replacep, with k. The functionsb* belong to
wherep=—iV is the_ canonical ”‘.O”‘e“t“m am) is a vec- the same energy. The wave veclgrhas an arbitrary value
tor of the vortex lattice. Its zero-field version corresponds to

at this stage; we shall establish it later. The generic transla-
tion is 2by which is the size of the magnetic unit cell along
they axis. The magnetic unit cell contains two vortices be-
cause the superconducting magnetic flux quantum corre-
spond to one-half of the 2 phase circulation of a single-

particle wave function. The functiond* transform into
each other under odd translations

a shift
To(R)F(r)=exgd —iRPIf (1) =f(r—Ry).

The operatoff (R;) commutes with the Hamiltonian because
Vs andA are periodic in the vortex lattice and the commuta-
tor:

Ty[(2m+1)bo]d = (ky ky) = Ky2MH Do = (k, k).
(36)

SinceP, does not change under the action of the operator-,rhe functions, Eqsi34) and (35), have the Bloch form

Eqg. (30), magnetic translations for functions in Eqg. (18
are equivalent to the usual translatio'h;{RQ in space for a
fixed kinetic momentum of the particle.

It is more convenient to consider magnetic translations in
the symmetric gaug@=HXr/2. In this case,

=0.

A+eA) . eA
p c i,p—g j

Te(lag) D= (ke ky) = (= 1) e ™d0d = (k, k), (37)

T,(2mby) D *(k, k,) =€ 2Mod = (k, k). (39

We omit the coordinates,y in the arguments ofb ™~ for
brevity.
f(r—=R)). Since the magnetic translatidi(Ibo) commutes with the
Hamiltonian, the energy is degenerate with respeckto
For this gauge, the wave functions, E46), can be more This degeneracy is spurious, however. To see this, consider
conveniently written in a slightly different form the transformations, Eq$37) and (38). Forl =1, the trans-
formed function in Eq(37) is periodic ink, with the period
- 27rlay. This period corresponds to the shift of the center of
¢. (3 orbit yo=ck,/eH by one size of the magnetic unit celbg
Obviously, the transformation, E(38), should also have the
The extra phase factor elipHxy2c] is associated with our same symmetry. For one magnetic unit cell, a shift Iy 2
choice of the vector potential and allows us to reduce théi.e., for m=1) along they axis should combine with one
problem to the Landau gauge. The particle trajectory takeperiod along thex axis. The period irk, is 7/by; it should
the form of Eq.(21) with p,=+/p?—(px+eHy/c)%. The thus correspond to the shift of the coordinateby a,. We

f(R|)f(r)=exp( - iz—eCR|[H><r]

v y
\P(px;r)=exr{ieny/2c+ipxx+i J pydy’
Y1

function ¢ satisfies Eq(22). thus put
If ag andby are the unit cell vectors alongandy, re-
spectively, the magnetic translation operators for functions ky=eHxy/c. (39

of Eq. (31) are The energy depends on the position of the trajectory within

the vortex unit cell through the Doppler energy The en-
ergy e(ky ,k,) has a band structure due to periodicityZofit

is periodic with the periodeHb,/c=m/ay; and eHay/c
=mlby in k. and k,, respectively, which correspond to
shifts of the center of orbit by one vortex unit cell vector.

Tlag)¥o(pyx,y)=e P (pixy), (32

eHlb,
- c ;X!y . (33)

-’l\—y(lbo)q‘}n( Px:X,Y) :q,n( Px
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B. Spectrum Equation(44) needs a discussion. First, we show that the

Consider energieg> A, /H/Hg,. Applying the second- vortex potgntial indeed dqes not dgstroy Rj@dependence
level quasiclassical approximation to E&2) we find of the particle energy for fixed quasimomekigandk, , Eq.
(26), if e>AyyH/H¢,. We note in this connection that the
d=Cex £iA(s)], (40) Jn behavior of the levels in Eq(26) is preserved if the
contribution to the action from the oscillating potential
changes by an amount much less than unity for transitions

s ds between the neighboring levels with—n=1. For an energy
A(s)zj V(e— )%= A3sirt(2a) —. (41) €, the distance between the neighboring levels die
1 it ~Aqw./e. This corresponds to a change in the length of the

This quasiclassical approximation is justified because th&ajectory by
wave vectordA/ds~elvg is much larger than the inverse

where the action is

characteristic scale 44 of variation of the vortex potentidl 5s,~ Ve %€ il
for e>Ay\H/Hg,. The function/=p, v, is taken at the tra- wc Ay €

jectory which is a part of a circle specified by the coordinatesryg yariation in the length is much smaller than the intervor-

of its centerxg andyo= —cpy/eH; they determine the posi- .. ;i . )

. . - . ex distanceag~ &\H o /H if €>AyVH/H,, and the action

tion of the trgjectory within the vortex u_nlt C?"' . changes by a quantity much less than 1. It shows that the
For energiesd o VH/Hp<e< Ao, quasiparticle trajectory gistance between the levels with differengs given by Eq.

is extended over distances of the orderrg{e/Ao). The (26 is not affected by the vortex potential. Finally, we dem-

quantization rule defines the energy onstrate that small regions on a trajectory where the expres-
5 ds sion under the square root in E¢12) is negative do not
f J(e— )%= A3sirP(2a) — =mn. (42)  affect the spectrum iE=Aq\H/H,. Let sy be the size of
s1 U1 the region where {— )?2<A?(«). The estimate shows that
Heres, ands, are the turning points. Expanding in small So~ ({/€)ao. One can write
{<e we find

(e— )%= A%(a)~sells,.

o[ 2 AZsi (2a) d_y_mJyz {(xy)e dy  The imaginary part of the action becomes
y

Y1 Py 1\ e?— Adsir?(2a) Py 22 (e

ImA~—~\/—.
=1n. (43) Vg So

Here {(x,y) = (ke+eHy/c)vs,+ pyvsy While y; andy, are  The decay lengtix of the wave function is\~so(e/¢)*>.

the turning points which correspond to a vanishing of theWe see that it is much longer than the length of the classi-
square rootk,+eHy; ,/c=p, sin(2x,). The energye, is a  cally inaccessible regios,: The wave function does not feel
function of k, and xy which determine the location of the the inaccessible regions and the trajectory is not destroyed.
particle trajectory with respect to vortices. The energy is thus The situation changes drastically for smaller energies
periodic in k, with the periodeHby/c and inx, with a  <AgyH/H: The centers of bands will deviate strongly
period a; when the center is shifted by one period of thefrom the positions determined by E(26) due to a consid-
vortex lattice. erable contribution from the periodic vortex potential to the

The ¢ term under the second integral in E43) oscillates  turning points in Eq(42). Moreover, the applicability of the
rapidly over the range of integration and mostly averagesgjuasiclassical approximation, E@2), itself is violated; the
out. The remaining contribution determines the variations opotential / is strong enough to break the particle trajectory
energy withk, and x, and can be estimated as follows. into separate piec¥sand to cause large deformations of the
Variation of action fore<A due to a change in enerd¢ is  energy spectrum. Some states can even become effectively

localized near the vortex corédVe conclude that the con-
SA~ (Selvg)(el Ag)r ~(ede) (Agwe). dition e>Ay\VH/H, is vital for existence of the Landau
quantization.

In the present paper we do not calculate the band structure
of the spectrum exactly. The corresponding numerical analy-
sis will be published elsewhere. In the following sections, we
rather consider a situation where the particular band structure
is not essential while the Landau-level quantizations are of a

en(Ky ky) = \/4Aowc[n+§o(kx,ky)], (44) crucial importance.

wherely~1. The energy, Eq44), has a band structure; the

bandwidth is of the order of the distance between the Landau
levels. It is small as compared to the energy itself. It is clear
that the spectrum for energiesz A, can also be obtained In this section, we discuss how the Landau quantization
from Egs. (25), (28), and (29) through the substitutiom affects transport properties of superconductors. We show
— N+ Lo(Kky,ky). that, by studying some transport characteristics, one can ex-

Variation of action due to a shift of the center of orbit by
a distance of the order of the lattice period A
~(ag/vg){~1. The corresponding energy variation is thus
de~Aqw/e. Sincex is coupled tk, through Eq.(39), the
energy can be written as

V. INDUCED TRANSITIONS BETWEEN THE LANDAU
LEVELS
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perimentally observe the Landau-level structure of the en- For an extended state with an energy A, the particle
ergy spectrum. It is known that the vortex motion inducestrajectory crosses many vortex unit cells at various distances
transitions between the quasiparticle states. The transitiorfsom vortices. Since the distribution functidn is constant
between low-energy core states wigA,H/H., were along the trajectory according to E@6), it should be also
considered in Ref. 9. It was shown that the vortex core stateindependent of the impact parametée., of the distance
determine the vortex response to dc and ac electric fields. Fdrom the trajectory to the vort¢xWe thus look for a distri-
temperature3 . VH/H,<T extended states dominate. It was bution functionf, which is independent of coordinates. One
found in Ref. 9 that the vortex response is determined byan then omit the last term in the left-hand siti&iS) of Eq.
what was called “collective modes” which are associated(45). Let us average Eq45) over an area which contains
with the electron states outside the vortex cores. In this segnany vortex unit cells but has a size small compared with
tion we demonstrate that these collective modes are nothindpe Larmor radiusap<r<r . Sincer <r_, the momentum
but transitions between the electronic states, (Bd), speci- p is still an integral of motion. We hav@ompare with Ref.
fied by the same quasimomentum but by different principall8)

guantum numbera. We start with noting that the transition

matrix elements are proportional®o(® ,(k;) VH @ (k;)) f g,&dzr— ETrf d2r g (VH)- a_]cl_f Jdr
where the Hamiltoniai ; is composed ofAp andZ, while k S Ot 2 Js ap So

is the quasimomentunil, is periodic with the period of the 1 . .
vortex lattice; thus transitions are possible between the = ETrf d’rg_(v.-VH)
guasimomenta which differ by vectors of the reciprocal lat- o

tice. Since the band energy is periodic in the quasimomentgiere Tr is the trace in the Nambu spa&=®,/B is the

with the periods of the reciprocal lattice, the energy differ-area of the vortex unit cell. The collision integral has the
ence for these transitions corresponds to the energy diffefgrm?3

ence for states with the same quasimomentum but with dif-

af©
de

ferent quantum numbers For {y<<n the transition energy is 1 + +

just the distance between the Landau levefs;(k,k,) J=——[(fy{g-)—(f19-Ng-—(Fo(f1) —(f2f ) F-
= Je, determined by Eq4925), (28), or (29). For low ener-

gies in a d-wave superconductor, one hade(k,,ky) +(f(Fy—(f f_NFTT,

=2Aqw./€, in accordance with Eq26). h . he Fermi surf Using th
Consider the vortex-induced transitions between the lev?’ ere(- - -) is an average over the Fermi surface. Using the

els in more detail. We use the microscopic kinetic-equatiodentity

approach which has been applied earlier $awave super- 1

conductors in Ref. 22. The kinetic equations for the distribu- _Trf d2r[(V|:|)§_]= mzXv, ]
tion functionsf, andf, have the forn?® 2 Js

derived in Ref. 22 we find

E)g_+ | 1 95 +f! :?Ap) —af(0)+ v
e(ve B)g-+ S| fo— =+ T —= ] |——+ (Ve V) oty of, . .
_W[ZXVJ_]‘&_"_E g_dr— | Jdr
af, [e P So So
X(9-T2)+9-—+|c[vexH]g- ()
=m(vi-[2xv.]) — (47
1. ‘e af, €
-5 (F_VAS+fLVAp) |- —
2 ap We shall concentrate on energies-A{H/H,. In the
1 f (?A; " oA, f leading approximation
+§ ,—&p + ,a—p -Vi=J (45) .
g =————0[’~A%(a)],
and V2= A%(a)
: o Ala)
HereJ is the collision integral, fl=—oo——0[e?—A%(a)].
e?—A%(a)
5 gRA  fRA
QR(A):( —§TR(A) _gR(A)) We have

are the retardedadvancedl quasiclassical Green functions, (f)=(f19-)=0, (faf)=(f:fl)=0.
andg_=(gR—g")/2. In Eq.(45) we encounter the Lorentz For ad-wave superconductor algd_)=(f")=0.

force which has appeared due to the transfromation  |n the collision integral, the main contribution fos
=2, y=e xa'%; used for derivation of this equatidi. >A H/H¢, comes from the delocalized states. Indeed, in-
This is exactly the point which we discussed in Sec. | including contributions from the states in the cSraith ener-
connection with the transformation of E@). giesE,(b) we would have
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F(7r/2)=%l(l+2M), (53

whereb is the impact parameter. The first term in squareVhereM is an integer.

brackets comes from the core states. Singe-7 and b

~&yHg,/H, the core contribution is of the order of

7 YWH/H,. The delocalized states, however, give
(e/Ag) 7 which is much larger than the first term. Neglect-
ing the core contribution we find
J= ! f
= ;(g,}g, 1-
Let us put
90

fi=———{([uXp.]- 2 yo+ (U-p )yl (49)
The functionsyg 4 satisfy the following set of equations:

dvo
e Y= V(a)yot+1=0,

ay
=t Yo V@) = (49
which is derived from Eq(47). Here
—ilw+{(g_)7)g_
V(a):( w+(g-)/7)g (50

We

and w is the frequency of the applied field.
The general solution of Eqg49) can be obtainétby

putting W.. = yy+ivyo. We have
We W, — V(W +i=0
e T W V()W. £i=0,
whence
W, = Ct:iJ' eiia'fF(a’)dar eiioﬂrF(a), (51)
0
where

Fla)= foaV(a’)da'.

The constanC.. is found from the condition of periodicity
W(a)=W(a+ m7/2):

exp[F(w/z)]f:Zexq:ia—F(a)]da
= A g a2 E(a12)] (52)

In the limit 7—, the functions

yu= (Wi +W_)/2; yo= (W, —W_)/2

have poles when

A. High energies

Excitations with high energieg> A, have resonances at

2
Ve —Az(a

The lowest frequenci =0 exactly corresponds to the con-
dition

——————da=27(1+2M).

w=(de,/dn),

where de,,/dn is the distance between the Landau levels
determined by Eq(23). The resonant frequencies are in the
range ow<w, and appoach the cyclotron frequency fer
>A,. For illustration, consider as-wave superconductor.
Equations(49) have the form

Yt Vyo=1,
—Vyu=0, (54)
where
—iw € )
V(a)= O[e"—Ag]
we GZ—AS T
since

=——(f1 (f1)O[ 2= Af].
One has from Eq(54)

1 v
1+v2 0T e

YH™

The resonances appear whepr>1; the poles correspond
to V= =i so that

\/fAO de,

€ dn’

w=w (55)
where e, is determined by Eq(29). For not very low tem-
peraturesT~T,., the resonances are practically not distin-
guishable from the cyclotron resonance. However, the situa-
tion changes for lower temperaturés< T, where the low-
energy states dominate.

B. Low energies

For energiese<A, the resonant frequencies are essen-
tially above the cyclotron resonance; this could be antici-
pated from the fact thatle,/dn>w. as follows from Eq.
(25 with e<A,. We start our discussion with the observa-
tion that the condition, Eq(53), is not simply the distance
between the Landau levels determined by E%). Indeed,
one has from Eq(24)
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dGnJ‘aE €
dnJ-a, \Je2—A2(a)

whereA(a,) = €. At the same time, Eq53) gives the lowest
resonant frequency

da=7w¢,

w ae €
—NJ —————da=2,

We T o EZ_AZ(CZ)

where N is the number of gap nodedNE4 for a d-wave
superconductgr We see that the resonance occurs at

de
Nw=2—0.

an (56)

When the vortex oscillates, al nodes participate in excit-

ing quasiparticles which accounts for the factéron the

LHS of Eq. (56). This is similar to the process of multipho-
ton absorption. The factor of 2 on the RHS is explained b

noting that states with momentum directiansinda + 7 are
simultaneously excited.

Consider now the dynamic vortex response for energies
AgyH/H ,<e<A, when the states in the gap nodes far
from vortex cores dominate over the contribution from the

core stateS.Solution of Egs.(49) and (50) for this energy

range was obtained in Ref. 9. We recall it for completenes

In the main region of angle$e|>a.=€/2A,, one has ac-
cording to Eqs(51) and(52)

vo=Acosa+Bsina,

yy=1—Asina+B cosa, (57)
with
_ e*sinh B e *sinh\ . 58
2 sinfPA+1 2 sinfPA +1
Here
A=F(a,), F(ml2)=2\

and we uséd-(7/2— a)=2\ —F(a). The expression fox is
easily obtained from Eq50):

—iw+{(g_)/
N s C D

7 (9- (59

We

We see that the effective relaxation rate is.1{=|€|/AyT
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where €, is determined by Eq(26). This condition agrees
with Eq. (56). The resonance frequencies are above the cy-
clotron resonance> w.\H.,/H for excitations with ener-
giesAgyH/H<e<A,.

These resonances were first predicted in Ref. 9. Note the
different numerical factor in Eq60) as compared to Ref. 9;
this is because a simplified version\f«) has been used in
Ref. 9. The main effect of resonances is that vortices expe-
rience a considerable friction force, E@1), even in a su-
perclean case 7. 1.

C. Vortex friction

A vortex moving with a velocityv, experiences a force
from the environment which is usually parametrized see,
for example, Ref. 1B

Fenv=—nvL—7'[v  XZ]. (61)

According to Ref. 22, the delocalized states contribute to the
Yeonstants as follows:

Ndel= T N< J
del

where(- - -), is an average ovata. The factory’ is deter-
mined by the same expression whexgis replaced withyy .

S+ The presence of resonances makes the dissipative con-
stantzge finite even in the superclean limi.7—o. As we
know, excitations both below and aboxg can participate.
For swave superconductors, the contribution of the core
states withe<A, has been considered in Ref. 24. These
resonances occur ai=w, above the cyclotron resonance,
wg~ EF/Ag being the distance between the Caroli—-de
Gennes—Matricon bound states in the vortex é81@n the
contrary, the high-energy states for swave case give

(62)

df® de
|’yO de 2/ °

ko

E
yo=5 [8(0=E)+ o0t E)],

where E=wc\/1—A02/ez, as follows from Eq.(55). It re-
quiresw<w., of course. The friction constant due to high-
energy states becomes

wlw?  dfO(ey)
(1—w2/w§)3/2 de '

whereey=A,/\1— w? w?.

A detailed discussion of the resonant vortex friction for a

Nder= ™ NAg (63

since(g_)=|e€|/Aq. Note that ar approximation was used in d—wave superconductor in the frequency range w. at
Ref. 9 for the collision integral. To get the present expressioow temperatures can be found in Ref. 9. These resonances

for A from that obtained in Ref. 9 one has to replacewith
1/7'eff .

In the superclean limit— o, the response, Eq&7) and
(58), has poles at\ =(2M +1)#/4, i.e., for

w=(2M+1)Ey(e), Eg(€)=Aqw./|€|. (60)

We have forM =0

_1d6n
“2dn’

w

can be, in principle, observed in the far-infrared region in
magneto-optical experiments. Indeed, for a magnetic field of
8 T used in Ref. 17 the cyclotron frequency was of order of
few kelvins which provides quite reasonable temperature
range for detecting the predicted resonances.

VI. CONCLUSIONS

We discussed and analyzed the ‘“Landau-level” vs
“energy-band” opposition in the description of the structure
of the excitation spectrum in the mixed state of supercon-
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ductors and, in particulag-wave superconductors. We find the distance between the Landau levels; it is small compared
that the actual picture of quantization is an interplay betweeto the energy itself.

the two limiting images of the energy spectrum. Our analysis An ac electric field induces transitions between the states
shows that the influence of the magnetic field on delocalize®elonging to different Landau levels. Using the microscopic

excitations in a superconductor is not reduced to a mere a&inetic equations we demonstrate that these transitions can
tion of the effective vortex lattice potential. In fact, the mag- b€ seen as an increase in the vortex friction due to a resonant

netic field has a twofold effect: On the one hand, it create@Psorption at frequencies corresponding to the energy differ-
vortices and thus provides a periodic potential for excita8Nces between the Landau levels.

tions; on thg othe_r hand, it alsq affects the Ipng—range motion ACKNOWLEDGMENTS

of quasiparticles in a manner similar to that in normal metals.
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