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Correlation functions for an elastic string in a random potential: Instanton approach
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We develop an instanton technique for calculations of correlation functions characterizing statistical behav-
ior of the elastic string in disordered media and apply the proposed approach to correlations of string free
energies corresponding to different low-lying metastable positions. We find high-energy tails of correlation
functions for the case of long-range disordtre disorder correlation length well exceeds the characteristic
distance between the sequential string posiliarsl short-range disorder, with the correlation length much
smaller then the characteristic string displacements. The former case refers to energy distributions and corre-
lations on the distances below the Larkin correlation length, while the latter describes correlations on the large
spatial scales relevant for the creep dynamics.
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An elastic string in two-dimensional random potential is action® yield the result for the disorder-averaged free energy
an archetypal problem of statistical physics, with applica<{e)=(x—x,)*3 and the average displacement of the string
tions to a widest variety of systems and phenomena. Thé)o (x—x)%3
examples include vortices in superconductodislocations’ The dynamic response, however, requires more detailed
domain walls? and non-Hermitian quantum mechanfcBhe  statistical description, since in such a complex system, a non-
string that energetically disfavors overhangige vorticeg  self-averaging behavior can be expected. Many of the results
maps ontodirected polymer In the random potential the have been already made available in the course of 15-year-
string bends to adjust itself to the pinning potential relief.long research, see Ref. 5 for an excellent review. For recent
Directed polymer approximation correspondsweak pin- developments, we cite calculations of the free-energy
ning, where the string shape is smooth and coincides with theumulant$ and tails of its distribution functiof’
path of the classical particle traveling through the corre- So far, attention has been mainly drawn to statistical prop-
sponding rugged energy landscape. The Hamiltonian of therties of the free energy for a fixed position of the end,
string has the forth e(x,{). The correlation functions describing different posi-

tions of the string, important for its slow dynami¢soise
K aL and velocity correlations are also of interest. Conceptually,

H :J dx 2 " ax they also test the non-Gaussian shape of distributions. In this
paper, we make the first step in this direction and evaluate
Herex is the coordinate along the preferential directifor ~ the distribution function
small displacements it also measures the length of the seg-
mend, £(x) is transverse displacement,is the elastic con- P(u)=(s[u—e(0,{1)+&(0{2)]), 2
stant, and the random potentM(x, ) is routinely assumed
to be Gaussian, with zero averagé) =0 and the correlation
function

2

d¢ +V(X,{)

dx <1. (1)

which describes correlation between the sequential energies
of the string, as it is displaced transversely to the preferential
direction. In what follows, we assumg={,.

(V(x,OV(X',")=Bo(x—x"K({—={"), fK(y)dy=1- I. MODEL

The amplitudeB depends on the type of disorder. For in-  The starting point of our theory is the equation for the free
stance, for a vortex pinned in a plane by point defe@s, energy e, which can be derived by the transfer-matrix
~ &5n;V2, with &, n;, andV being the core radius, concen- method from Eq(1), and reads

tration of defects, and the energy of vortex-defect interaction, ,

respectively. de 1 (0e\* T o
Much of the early effort was concentrated on the fluctua- IX + 2kl o] 2« a_gz =V(x.0), )

tions of the free energy of the string. Let the left end of the

string be fixed atz=0, x,<0. The quantity of interest is whereT is temperature. Equatiof8) is easily recognized as

then the free energy of the string as the function of the Kardar-Parisi-Zhang equation in+11 dimensions. To this

position of its right end X,{). Knowledge of the mean free end,x and{ can be identified as time and coordinate, respec-

energy(e) is important for calculation of dynamical quanti- tively.

ties, such as pinning energy or drift velocity. Various tools, We focus on the behavior of the correlation functi@nat

which, among others, include numerical analysBethe an-  largeu. In this caseP(u) is the probability that the energy

satz solutiorl, and power counting based on the effective changes considerably upon small displacement of the string.
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This probability is expected to be exponentially small, anddiscontinuous ak=0; integrating Eq(8) between—0 and
an appropriate technique to calculate exponential tails is the-0, we obtain the boundary condition

instanton approach, allowing us to avoid difficulties associ- )

ated with the replica method. The Laplace transform of the p(Xx=—=0,0)=IN[8({—{1) — (L~ L2)]. 9

function (2) can resent the functional integral . . .
unction (2) can be presented as the functional integral, To solve the saddle-point equations, we disregard the term

with 92¢/9£2 in Eq. (8) for a while. Then, due to Ed9), the
H(X)=<e}‘[8(°'§1)78(0’§2)]>=J DeDye®?,  (4)  function ¢ always remains the sum of twdfunctions,

with the effective action Y, 0) =i u()[8(—pi(X)— (L= py(x))],  (10)
where the tilde means that this solves the “incomplete”
equation. Equation(9) implies w(0)=N\, p;0)={1,.
From Eq.(7) we then finds(x,{) =a(x)+b(x) ¢, with

1 (r?s) T 5%

Y2k %) 2 op

Ste.u1=i [ axdeyoxo)| o

-B J dxdZdZ" p(x, K (L= L) p(x,¢") a’' +b%2k=— Bk u(pi—p3),
+\[£(041)—£(0,42)]. (5) b’ =28k, u(p1—p2).
To arrive at Eq«(5), we have used the identity Substituting this back into Eq@8), we find w(x)=\ and
p1(X) —po(X)=¢,—,. These solutions and, consequently,
de 1 [de T 6% the resulting form of the distribution function, are very dif-
f Dedl —~+ 5. &_g P a_gg_v =const, ferent from those for Burgers equatith.

Now we include the term withy?y/9{? into consider-
which is a consequence of causality, and subsequently peation. We look for a solution of Eq7) in the form of a linear
formed averaging over the random poten¥al function of £, e=a(x)+b(x){ (the consistency is checked
The field theory(5) is essentially two dimensional. To afterward$. The linear equation(8) is easily solved, and
move further, we extend the technique developed by Gurarigields
and Migdat* (GM), who studied velocity correlations in the
Burgers equation. That is, in order to describe the tails of the
correlation function(2), we have to find the instanton P(x,0)= W
(saddle-point trajectory and calculate the acti@, at this (11)

trajectory. The result foFI(\) with the exponential accuracy
reads with p;=p5;=Db(x)/k. Substituting this into the right-hand

side of Eq.(7), we find that the latter is temperature inde-
II(N)=exd Si,(N)—Sip(0)]. (6) pendent, i.e., it remains the same as that without the diffusion

Prefact be obt d ; ticallv b di thterm Thus, the linear ansatz fers consistent. Also, we find
refactors can be obtained systematically by expanding 3 28K\ (p1—ps). The solution is thenps Ax)={15

action around the instanton path, but this goes beyond thgb Xl i+ BRN (1~ £5)XP k.
0 1 1762

scope of this paper. Next, we calculate the actioBalon i j
. . . g the instanton trajec-
haT:?hZagodrlr?]'po'nt equations for the effective actipa, ] tory. As seen from the saddle-point equations, the first term
v in Eq. (5) is just double of the second one. Multiplying Eq.
(8) by &, integrating it ovex (from —« to —0) and over,

1/2
[ele(E=pD/2TX _ glx({~pa)i2TH

‘;_iJr% ‘;_‘2)2_ ;7?;: —2iBJ dZ'K(E—= ) (%, E"), and comparing with Eq(7), we find
D o0 s0221= 28 [ uku— 5. dxdw( g)z
a¢+ 17 ( a_s) + l ﬂ Sincee linearly depends od, andfd{=0, the last term in
Xk dL\ T IL] 2k g? the right-hand side vanishes. The instanton action acquires
e LR ATE TS NG B )
II. LONG-RANGE DISORDER S‘”:_'Bf::dxf gz’ (X, KL= p(x.L7).

We assume first that the functio is only slightly (12
changed on the scale df—¢,. It can be then expanded, Substituting the instanton solutigfhl) into Eq.(12), we find
K(y)=ko—kyy?/2. In the subsequent analysis, we follow that the term proportional t, in the effective action van-
GM. ishes, while the contribution witk; diverges in the limit of

Note that Eqg.(8) only has nonzero solutions with finite large negativex. This is because our consideration is limited
action forx<<0 (“diffusion in reverse time’). The field¢ is  to distances shorter than the correlation length of the random
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P Let us calculate the energy created by a peak-shaped field
) ¢, located at{=p, far from this point. At large distances
€ from the peak, the solution must have a scaling form. Equa-
R / tion (7) with the zero right-hand side allows for only one
scaling solutione=f(({—p)/x*?) vanishing atx— —,
which at large scales, where the term with the second deriva-
tive can be disregarded, becomes= k({—p)?/2x. For
|£—p|<(Tx/ k)2, the diffusion term is important, and this
simple form of the scaling solution does not apply.

B;(1K§ T u Our solution has an obvious drawback: It divergesxas
Go\/T Qog goes to zero. To amend this, we write
FIG. 1. Distribution functionP(u) for long-ranged correlated _ K(ﬁ—P)Z %>0 (15)
disorder, Eq(14). &= 2(x—x%p) 0T

potentialé~ (ko /k;)*?, so that we could repladé(y) by its ~ The regularization constamg plays an important role and is
expansion. This cutoff effectively defines the constapt  found from the following considerations. Far=0, the en-
Replacing integrals ovef in Eq. (12) in infinite limits by  ergy given by Eq(15) is eq= — k{?/X,. In the scaling re-
integrals from— &/2 to £/2 and calculating them, we arrive at gime, the only one relevant length scalefis=¢{;— {,, and

the cutoff forx, the only relevant energy scale is temperature. Therefbre,
, ~ k5 %0, Whencexo~ x5/ T. The numerical factor remains
| K€, T>T 13  undetermined, but can be deduced from numerical solutions
© | = (k&I BkN L)Y T<T, 13 of Egs.(7) and (@)

. i Now we return to Eq(8) and solve it at smallx|, when
with {o=¢1— ¢,>0 andT.=(Bk,x{oéN) "2 The instanton  the peak and the dip are well separated. We wite, £) in
action readsS;,=Bk;{5\?|x | Note that, since our cutoff the form Ypeak™ Yaip- The peak[located nearf=p;(x)]
procedure is somewhat arbitrary, we have removed all Nuthen experiences the energy produced by itself and the en-
merical factors from the action. Laplace tranSfOfming qurgy produced by the d|p The energy of an isolated peak
(6), we arrive at the expression (15) grows as¢? far from the peak, and hence at the point

lechuz/(Bkl"fzgg), U<TolE p1, the energy produced by the dip is much greater than the
P(u)=

peak contribution. If, in additionp,— p;> (T(xg— X)/ k)2,

e~ Cu¥(BkykELY) u>TEolE, (14 \(/g)e can use Eo(.lSz] to evaluate the coefficierts/d¢ in Eq.
’ . We get then the equation

which is illustrated on Fig. 1, wittk~c'~1.

The result (14) was obtained by instanton approach,
which means it has to be exponentially small. In particular,
this requires u>0. We thus get the conditionsu
> (o(Bkk&)Y? for the elasticity-controlled regimgP(u)
xexp(—w)] and o(Bkik&T)Y2<u<(,T/é for the
temperature-controlled reginj@(u)=exp(—u?)]. The latter
result only holds for temperatures higher thahy
= &¥3(Bk,k) Y3, which does not depend ofy and has a [

d X T &2
¢peak+ wpeak+ P17 P2 ¢peak+ e —¢=0, (16)
X X—Xo X—Xqo d¢ 2K ;2

with the boundary conditioypead X=0)=iN6({—{1).
Writing a similar equation for the dip{&= p,) and solving
both equations, we obtain

¢peak} _ i)\XOKU2 1 ;{ _ K(g_Pl,Z)z)

+
Ydip (27 T|x|)¥2 Xo— X 2T|x|

meaning of depinning temperature—the typical pinning en-
ergy on the Larkin correlation length. Above the depinning
temperature correlation functions decay faster than

exponentially* In particular, note the similarity between the ol pi—p
lower line of Eqg.(14) and the corresponding expression for { ,] —4r P2 (17)
the distribution function of the full energy of the string in P2 X~ Xo

Ref. 10.
As follows from Eq.(17), the positions of the peak and

Ill. SHORT-RANGED DISORDER the dip are pulled apart._The distance between them grows as
(x—Xg)?; at the same time, they smear [a$*?, thus, they
We take nowK(y)=6(y). At x=0, the fieldys is a set of  never overlap and can be considered as well separated at any
a o peak(located atf=¢,) and ad dip ({=¢{»), see Eq(9).  x. Using Eq.(17) to calculate the instanton action, we get
As we trace the evolution in reverse time, these features
smear and move. For short times, befGfeever) they inter- Sin=aBN2kloIT, (o=01— (>, a~1, (18)
sect or smear so much that they become indistinguishdble,
remains a peak-dip function, centered &t p,(x) and {  which translates into the expression for the distribution
=po(X), and sharply vanishing away from these points.  function
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aTuw? back and forth. The tunneling rate is determined by the
Brto)’ a~1. (190 height of the barrien. A similar information can be extracted

from the random telegraph noise resulting from the motion
The expressior{19) is valid for temperatures much higher of the string between two positions. The time spent in each
thanBx{,/u? and is an analog of the upper line of E44).  position is determined by the barrier to be overcome seen
We conjecture that the long-ail of the distribution function  from this position. These considerations do not take into ac-
[the analog of the lower line of Eq14)] also exists, though count a possibility of macroscopic quantum tunneling, which
we were not able to obtain it with this method of solving has to be considered separately.

P(u)=expg —

Egs.(7) and(8). (i) Distribution of pinning energies. The string(iscally)
depinned if it moves from one free-energy minimum to the
IV. DISCUSSION AND CONCLUSIONS next one. The pinning energy corresponds precisely to the

i ) . quantityu above. However, globally one has to average over
Equationg(14) and(19) constitute the central result of this e gistribution of the displacements, i.e., to know the

paper. The functiorP(u) has a meaning of the probability gisribution of distances between adjacent minima and
that the difference of energies of a string of the same lengthaxima of the random potential. Measurements of the distri-
and the transverse displacemedtsand {,, equalsu. An 1y tions of the pinning energy compared with our results can
instanton solution corresponds to the situation wheré;at proyide an information about this distribution, which, to our
thgre is @ minimum of thq potential energy whiledatthe  ynowledge, has not been previously discussed.
neighboring maximum exists.P[u], thus, measures the |5 conclusion, we have developed an instanton approach
height of the barrier of the free-energy relief. For latgdo o calculations of various correlation functions describing
find a high barrier is quite improbable, consequently the restatistical behavior of the elastic string in the two-
sult is exponentially small. . _ dimensional disordered potential. We applied our technique
If the string has a finite transverse sigg the correlation g the investigation of correlations of free energies corre-
radius¢ of the disordered potential is of order &f. Equa-  sponding to different low-lying metastable positions of the
tion (14) thus describes the case when the string is displacegtring. We have found the asymptotic behavior of such
at a distance small compared with its transverse dimensionergy-energy correlations for the moderate spatial scales
and Eq.(19) applies in the opposite regime of long distance. (within Larkin correlation lengthand the large scales, ex-
These results have an important conceptual value, sincgeding Larkin length. The latter situation corresponds to the
they describe correlation functions of energy at different potgnditions of the creep dynamics. We have discussed appli-
sitions for the directed polymer problem. We argue now thakations of our results to the dynamic response and noise in

they also provide certain predictions for experimentally ob~arious two-dimensional systems such as domain walls, vor-
servable dynamical properties of the string. We suggest tW@ces, and dislocations in thin films.

types of experiments, which certainly do not exhaust all the
opportunities.

(i) Creep of domain walls. If a domain wall moves from
one position to another one, the distance between the two
positions can be measured. The quantjty which is the The work was supported by the U.S. Department of En-
distance between a position and a maximum separating thergy, Office of Science, Under Contract No. W31-109-ENG-
two, is not known, but can be determined if the wall travels38.
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