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Correlation functions for an elastic string in a random potential: Instanton approach
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We develop an instanton technique for calculations of correlation functions characterizing statistical behav-
ior of the elastic string in disordered media and apply the proposed approach to correlations of string free
energies corresponding to different low-lying metastable positions. We find high-energy tails of correlation
functions for the case of long-range disorder~the disorder correlation length well exceeds the characteristic
distance between the sequential string positions! and short-range disorder, with the correlation length much
smaller then the characteristic string displacements. The former case refers to energy distributions and corre-
lations on the distances below the Larkin correlation length, while the latter describes correlations on the large
spatial scales relevant for the creep dynamics.
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An elastic string in two-dimensional random potential
an archetypal problem of statistical physics, with applic
tions to a widest variety of systems and phenomena.
examples include vortices in superconductors,1 dislocations,2

domain walls,3 and non-Hermitian quantum mechanics.4 The
string that energetically disfavors overhangs~like vortices!
maps ontodirected polymer.5 In the random potential the
string bends to adjust itself to the pinning potential reli
Directed polymer approximation corresponds toweak pin-
ning, where the string shape is smooth and coincides with
path of the classical particle traveling through the cor
sponding rugged energy landscape. The Hamiltonian of
string has the form6

H5E dxFk2 S dz

dxD
2

1V~x,z!G , U]z

]xU!1. ~1!

Herex is the coordinate along the preferential direction~for
small displacements it also measures the length of the
ment!, z(x) is transverse displacement,k is the elastic con-
stant, and the random potentialV(x,z) is routinely assumed
to be Gaussian, with zero average^V&50 and the correlation
function

^V~x,z!V~x8,z8!&5bd~x2x8!K~z2z8!, E K~y!dy51.

The amplitudeb depends on the type of disorder. For i
stance, for a vortex pinned in a plane by point defectsb
'j0

2niV
2, with j0 , ni , andV being the core radius, concen

tration of defects, and the energy of vortex-defect interact
respectively.

Much of the early effort was concentrated on the fluctu
tions of the free energy of the string. Let the left end of t
string be fixed atz50, xL,0. The quantity of interest is
then the free energy« of the string as the function of th
position of its right end (x,z). Knowledge of the mean free
energy^«& is important for calculation of dynamical quant
ties, such as pinning energy or drift velocity. Various too
which, among others, include numerical analysis,6 Bethe an-
satz solution,7 and power counting based on the effecti
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action,8 yield the result for the disorder-averaged free ene
^«&}(x2xL)1/3 and the average displacement of the stri
^z&}(x2xL)2/3.

The dynamic response, however, requires more deta
statistical description, since in such a complex system, a n
self-averaging behavior can be expected. Many of the res
have been already made available in the course of 15-y
long research, see Ref. 5 for an excellent review. For rec
developments, we cite calculations of the free-ene
cumulants9 and tails of its distribution function.10

So far, attention has been mainly drawn to statistical pr
erties of the free energy for a fixed position of the en
«(x,z). The correlation functions describing different pos
tions of the string, important for its slow dynamics~noise
and velocity correlations!, are also of interest. Conceptuall
they also test the non-Gaussian shape of distributions. In
paper, we make the first step in this direction and evalu
the distribution function

P~u!5^d@u2«~0,z1!1«~0,z2!#&, ~2!

which describes correlation between the sequential ener
of the string, as it is displaced transversely to the preferen
direction. In what follows, we assumez1>z2.

I. MODEL

The starting point of our theory is the equation for the fr
energy «, which can be derived by the transfer-matr
method from Eq.~1!, and reads

]«

]x
1

1

2k S ]«

]z D 2

2
T

2k

]2«

]z2
5V~x,z!, ~3!

whereT is temperature. Equation~3! is easily recognized as
Kardar-Parisi-Zhang equation in 111 dimensions.5 To this
end,x andz can be identified as time and coordinate, resp
tively.

We focus on the behavior of the correlation function~2! at
largeu. In this case,P(u) is the probability that the energ
changes considerably upon small displacement of the str
©2002 The American Physical Society01-1
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This probability is expected to be exponentially small, a
an appropriate technique to calculate exponential tails is
instanton approach, allowing us to avoid difficulties asso
ated with the replica method. The Laplace transform of
function ~2! can be presented as the functional integral,8

P~l!5^el[«(0,z1)2«(0,z2)]&5E D«DceS[«,c] , ~4!

with the effective action

S@«,c#5 i E dxdzc~x,z!F ]«

]x
1

1

2k S ]«

]z D 2

2
T

2k

]2«

]z2G
2bE dxdzdz8c~x,z!K~z2z8!c~x,z8!

1l@«~0,z1!2«~0,z2!#. ~5!

To arrive at Eq.~5!, we have used the identity

E D«dF ]«

]x
1

1

2k S ]«

]z D 2

2
T

2k

]2«

]z2
2VG5const,

which is a consequence of causality, and subsequently
formed averaging over the random potentialV.

The field theory~5! is essentially two dimensional. T
move further, we extend the technique developed by Gur
and Migdal11 ~GM!, who studied velocity correlations in th
Burgers equation. That is, in order to describe the tails of
correlation function ~2!, we have to find the instanto
~saddle-point! trajectory and calculate the actionSin at this
trajectory. The result forP(l) with the exponential accurac
reads

P~l!5exp@Sin~l!2Sin~0!#. ~6!

Prefactors can be obtained systematically by expanding
action around the instanton path, but this goes beyond
scope of this paper.

The saddle-point equations for the effective actionS@«,c#
have the form

]«

]x
1

1

2k S ]«

]z D 2

2
T

2k

]2e

]z2
522ibE dz8K~z2z8!c~x,z8!,

~7!

]c

]x
1

1

k

]

]z S c
]«

]z D1
T

2k

]2c

]z2

52 ild~x!@d~z2z1!2d~z2z2!#. ~8!

II. LONG-RANGE DISORDER

We assume first that the functionK is only slightly
changed on the scale ofz12z2. It can be then expanded
K(y)5k02k1y2/2. In the subsequent analysis, we follo
GM.

Note that Eq.~8! only has nonzero solutions with finit
action forx,0 ~‘‘diffusion in reverse time’’!. The fieldc is
13210
d
e

i-
e

er-

ie

e

he
he

discontinuous atx50; integrating Eq.~8! between20 and
10, we obtain the boundary condition

c~x520,z!5 il@d~z2z1!2d~z2z2!#. ~9!

To solve the saddle-point equations, we disregard the t
with ]2c/]z2 in Eq. ~8! for a while. Then, due to Eq.~9!, the
function c always remains the sum of twod functions,

c̃~x,z!5 im~x!@d„z2r1~x!…2d„z2r2~x!…#, ~10!

where the tilde means that this solves the ‘‘incomplet
equation. Equation~9! implies m(0)5l, r1,2(0)5z1,2.
From Eq.~7! we then find«(x,z)5ã(x)1b̃(x)z, with

ã81b̃2/2k52bk1m~r1
22r2

2!,

b̃852bk1m~r12r2!.

Substituting this back into Eq.~8!, we find m(x)5l and
r1(x)2r2(x)5z12z2. These solutions and, consequent
the resulting form of the distribution function, are very di
ferent from those for Burgers equation.11

Now we include the term with]2c/]z2 into consider-
ation. We look for a solution of Eq.~7! in the form of a linear
function of z, «5a(x)1b(x)z ~the consistency is checke
afterwards!. The linear equation ~8! is easily solved, and
yields

c~x,z!5
ilk1/2

~2pTuxu!1/2
@e[k(z2r1)/2Tx]2e[k(z2r2)/2Tx] #,

~11!

with r185r285b(x)/k. Substituting this into the right-hand
side of Eq.~7!, we find that the latter is temperature ind
pendent, i.e., it remains the same as that without the diffus
term. Thus, the linear ansatz for« is consistent. Also, we find
b852bk1l(r12r2). The solution is thenr1,2(x)5z1,2
1b0x/k1bk1l(z12z2)x2/k.

Next, we calculate the actionSalong the instanton trajec
tory. As seen from the saddle-point equations, the first te
in Eq. ~5! is just double of the second one. Multiplying E
~8! by «, integrating it overx ~from 2` to 20) and overz,
and comparing with Eq.~7!, we find

l@«~0,z1!2«~0,z2!#522bE cKc2
i

2kE dxdzcS ]«

]z D 2

.

Since« linearly depends onz, and*cdz50, the last term in
the right-hand side vanishes. The instanton action acqu
the form

Sin52bE
2`

20

dxE dzdz8c~x,z!K~z2z8!c~x,z8!.

~12!

Substituting the instanton solution~11! into Eq.~12!, we find
that the term proportional tok0 in the effective action van-
ishes, while the contribution withk1 diverges in the limit of
large negativex. This is because our consideration is limite
to distances shorter than the correlation length of the rand
1-2
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potentialj;(k0 /k1)1/2, so that we could replaceK(y) by its
expansion. This cutoff effectively defines the constantb0.
Replacing integrals overz in Eq. ~12! in infinite limits by
integrals from2j/2 to j/2 and calculating them, we arrive a
the cutoff forx,

xc5H 2kj2/T, T.Tc

2~kj/bk1lz0!1/2, T,Tc ,
~13!

with z05z12z2.0 andTc5(bk1kz0jl)1/2. The instanton
action readsSin5bk1z0

2l2uxcu. Note that, since our cutof
procedure is somewhat arbitrary, we have removed all
merical factors from the action. Laplace transforming E
~6!, we arrive at the expression

P~u!5H e2c8Tu2/(bk1kj2z0
2), u!Tz0 /j

e2cu3/(bk1kjz0
3), u@Tz0 /j,

~14!

which is illustrated on Fig. 1, withc;c8;1.
The result ~14! was obtained by instanton approac

which means it has to be exponentially small. In particu
this requires u.0. We thus get the conditionsu
@z0(bk1kj)1/3 for the elasticity-controlled regime@P(u)
}exp(2u3)# and z0(bk1kj2/T)1/2!u!z0T/j for the
temperature-controlled regime@P(u)}exp(2u2)#. The latter
result only holds for temperatures higher thanTd
5j4/3(bk1k)1/3, which does not depend onz0 and has a
meaning of depinning temperature—the typical pinning
ergy on the Larkin correlation length. Above the depinni
temperature correlation functions decay faster th
exponentially.1 In particular, note the similarity between th
lower line of Eq.~14! and the corresponding expression f
the distribution function of the full energy of the string
Ref. 10.

III. SHORT-RANGED DISORDER

We take nowK(y)5d(y). At x50, the fieldc is a set of
a d peak~located atz5z1) and ad dip (z5z2), see Eq.~9!.
As we trace the evolution in reverse time, these featu
smear and move. For short times, before~if ever! they inter-
sect or smear so much that they become indistinguishablc
remains a peak-dip function, centered atz5r1(x) and z
5r2(x), and sharply vanishing away from these points.

FIG. 1. Distribution functionP(u) for long-ranged correlated
disorder, Eq.~14!.
13210
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Let us calculate the energy created by a peak-shaped
c, located atz5r, far from this point. At large distance
from the peak, the solution must have a scaling form. Eq
tion ~7! with the zero right-hand side allows for only on
scaling solution«5 f „(z2r)/x1/2

… vanishing at x→2`,
which at large scales, where the term with the second der
tive can be disregarded, becomes«5k(z2r)2/2x. For
uz2ru,(Tx/k)1/2, the diffusion term is important, and thi
simple form of the scaling solution does not apply.

Our solution has an obvious drawback: It diverges ax
goes to zero. To amend this, we write

«5
k~z2r!2

2~x2x0!
, x0.0. ~15!

The regularization constantx0 plays an important role and i
found from the following considerations. Forx50, the en-
ergy given by Eq.~15! is «052kz2/x0. In the scaling re-
gime, the only one relevant length scale isz05z12z2, and
the only relevant energy scale is temperature. ThereforeT
;kz0

2/x0, whencex0;kz0
2/T. The numerical factor remain

undetermined, but can be deduced from numerical soluti
of Eqs.~7! and ~8!.

Now we return to Eq.~8! and solve it at smalluxu, when
the peak and the dip are well separated. We writec(x,z) in
the form cpeak1cdip . The peak@located nearz5r1(x)]
then experiences the energy produced by itself and the
ergy produced by the dip. The energy of an isolated p
~15! grows asz2 far from the peak, and hence at the poi
r1, the energy produced by the dip is much greater than
peak contribution. If, in addition,r22r1@„T(x02x)/k…1/2,
we can use Eq.~15! to evaluate the coefficient]«/]z in Eq.
~8!. We get then the equation

]cpeak

]x
1

cpeak

x2x0
1

r12r2

x2x0

]cpeak

]z
1

T

2k

]2f

]z2
50, ~16!

with the boundary conditioncpeak(x50)5 ild(z2z1).
Writing a similar equation for the dip (z'r2) and solving

both equations, we obtain

H cpeak

cdip
J 56

ilx0k1/2

~2pTuxu!1/2

1

x02x
expS 2

k~z2r1,2!
2

2Tuxu D ,

H r18

r28
J 56

r12r2

x2x0
. ~17!

As follows from Eq.~17!, the positions of the peak an
the dip are pulled apart. The distance between them grow
(x2x0)2; at the same time, they smear asuxu1/2; thus, they
never overlap and can be considered as well separated a
x. Using Eq.~17! to calculate the instanton action, we get

Sin5ãbl2kz0 /T, z05z12z2 , ã;1, ~18!

which translates into the expression for the distributi
function
1-3
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P~u!5expS 2
aTu2

bkz0
D , a;1. ~19!

The expression~19! is valid for temperatures much highe
thanbkz0 /u2 and is an analog of the upper line of Eq.~14!.
We conjecture that the long-u tail of the distribution function
@the analog of the lower line of Eq.~14!# also exists, though
we were not able to obtain it with this method of solvin
Eqs.~7! and ~8!.

IV. DISCUSSION AND CONCLUSIONS

Equations~14! and~19! constitute the central result of thi
paper. The functionP(u) has a meaning of the probabilit
that the difference of energies of a string of the same len
and the transverse displacementsz1 and z2, equalsu. An
instanton solution corresponds to the situation where az1
there is a minimum of the potential energy while atz2 the
neighboring maximum exists.P@u#, thus, measures th
height of the barrier of the free-energy relief. For largeu, to
find a high barrier is quite improbable, consequently the
sult is exponentially small.

If the string has a finite transverse sizej0, the correlation
radiusj of the disordered potential is of order ofj0. Equa-
tion ~14! thus describes the case when the string is displa
at a distance small compared with its transverse dimens
and Eq.~19! applies in the opposite regime of long distanc

These results have an important conceptual value, s
they describe correlation functions of energy at different
sitions for the directed polymer problem. We argue now t
they also provide certain predictions for experimentally o
servable dynamical properties of the string. We suggest
types of experiments, which certainly do not exhaust all
opportunities.

~i! Creep of domain walls. If a domain wall moves fro
one position to another one, the distance between the
positions can be measured. The quantityz0, which is the
distance between a position and a maximum separating
two, is not known, but can be determined if the wall trav
d

-

.

13210
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back and forth. The tunneling rate is determined by
height of the barrieru. A similar information can be extracte
from the random telegraph noise resulting from the mot
of the string between two positions. The time spent in ea
position is determined by the barrier to be overcome s
from this position. These considerations do not take into
count a possibility of macroscopic quantum tunneling, wh
has to be considered separately.

~ii ! Distribution of pinning energies. The string is~locally!
depinned if it moves from one free-energy minimum to t
next one. The pinning energy corresponds precisely to
quantityu above. However, globally one has to average o
the distribution of the displacementsz0, i.e., to know the
distribution of distances between adjacent minima a
maxima of the random potential. Measurements of the dis
butions of the pinning energy compared with our results c
provide an information about this distribution, which, to o
knowledge, has not been previously discussed.

In conclusion, we have developed an instanton appro
to calculations of various correlation functions describi
statistical behavior of the elastic string in the tw
dimensional disordered potential. We applied our techniq
to the investigation of correlations of free energies cor
sponding to different low-lying metastable positions of t
string. We have found the asymptotic behavior of su
energy-energy correlations for the moderate spatial sc
~within Larkin correlation length! and the large scales, ex
ceeding Larkin length. The latter situation corresponds to
conditions of the creep dynamics. We have discussed ap
cations of our results to the dynamic response and nois
various two-dimensional systems such as domain walls,
tices, and dislocations in thin films.
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