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Single-electron transport through the vortex core levels in clean superconductors
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We develop a microscopic theory of single-electron low-energy transport in normal-metal—superconductor—
normal-metal hybrid structures in the presence of applied magnetic field introducing vortex lines in a super-
conductor layer. We show that vortex cores in a thick and clean superconducting layer are similar to mesos-
copic conducting channels where the bound core states play the role of transverse modes. The transport through
not very thick layers is governed by another mechanism, namely by tunneling via vortex core levels. We apply
our method to calculation of the thermal conductance along the magnetic field.
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[. INTRODUCTION thick superconducting slabs where it is associated with the
Caroli—-de Gennes—MatricolCdGM) stateé propagating
Electron transport through various hybrid structures is thealong the core. The CdGM spectruy(k,) as a function of
focus of current nanoscale physics research. Of special intethe quantized angular momentup=n+1/2 varies from

est are normal-metal N)—superconductor §)— normal- —Aj to +Ay, crossing zero as the impact paramekter
metal (N) trilayers where a superconducting gap sup- = — u/k, varies from—o to +. Herekr=\/k2F—kZZ is the

presses single-particle transport, making charge transfegave vector in the plane perpendicular to the vortex,

transparency very sensitive to the external controlling param¢r, ¢, z) is a cylindrical coordinate system with tlzeaxis

eters. If the thicknesd of the superconducting slab is much chosen along the vortex line. For smallthe spectrum is

larger than the coherence lenggh the electrons with low €,(k)=—puAo/(k.&). Transport carried by the quantized

energiese<A, incident on the slab are reflected as holes transverse modes is described by the Landauer formula. In

and the normal current converts into the supercurrenthe limit Ay/(kpé)<T<A,, the number of modes is

Single-electron tunneling through an NSN structure decays- (T/Ay)kg&; thus one gets for the single-particle conduc-

exponentially with the slab thickness, giving rise, in particu-tance of one vort

lar, to the exponential drop off of the electronic contribution

to the thermal conductanc¢é.A single-particle transport re-

covers by applying a magnetic field that creates vortex GL=(e¥wh) X, T,~(e¥wh)(TIAg)(keé).

lines where the gap in the spectrum is suppressed. Since the g

single-particle contribution to electric conductivity is short- , numerates the transverse modes with transparerijes

circuited by supercurrent, we focus on the thermal conducppen in the core. From the Wiedemann-Franz law,

tivity, which is the experimentally accessible characteristic of

the ong—electror_1 transport. ki~ (TIR)(TIAg) (K €). (1
Taking the simplest view of a vortex core as a normal

conductor, we arrive at a single-electron Sharvin conducThis estimate can also be obtained from the Sharvin conduc-

tance per vortexGg,= (€% w#)Ng,, Whereke=pg/# isthe tance provided the group velocity is taken as,

Fermi wave vector antlg~ (ke£)? is the number of con- =de, Ifhok,~ €, Ifikg instead of the velocity ,~vg asin a

ducting channels in a normal wire with a radiisAs we  normal tube. The number of channéls in Eq. (1) is by a

already mentioned, the single-electron transport determinefactor (T/T.)(kg£) "1<1 smaller thanNg,. One thus ex-

the thermal conductivity. The Wiedemann-Franz law wouldpects that the Andreev-wire thermal conductargeof the

result ink~TG/e?*~ (T/A)N for the thermal conductance. A vortex core transforms into El) with increasingd.

more attentive consideration shows that only those trajecto- In the vicinity of H,, the thermal conductivity has been

ries contribute to a single-particle conductivity that do not hitstudied theoretically in a number of papésse, for instance,

vortex core “walls”: An electron withe<Aj flying into the  Refs. 5-7. In dirty superconductors, the electron contribu-

core boundary is Andreev reflected, which blocks the singletion to the thermal conductance along the vorfidesimply

electron transport along such a trajectory. The trajectorieproportional to the area occupied by the core¢B)

that traverse freely the normal region are confined to a solid=(B/H,) ky , Wherexy is the electron thermal conductivity

angle&?/d?, resulting in an “Andreev-wire” single-electron in the normal state. Unfortunately, in clean superconductors

conductance G,~ (e%/7#%)N, with the heat conductance this simple estimate fails to describe the experimental

ka%(T/H)N, where the number of channelsN, data®!®the thermal conductance along the vortices appears

~ (ke£)?(&/d)? is decreased againblg,. to be two orders of magnitude smaller. It was noted first in
The low-energy transport obviously saturates for veryRef. 10 that this obvious conflict can be caused by a very
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small group velocity of the CdGM modes as discussed  Normal metal z4

above. Analysis of quantum transport through individual vor- X N

tices is of particular importance for understanding mesos- 0 /:

copic superconductors whose exotic vortex states are nowa- ST

days the focus of a considerable attentibr> Superconductor ' H d
Hereafter we concentrate on the low-eneegyA, single- / \Y |

particle transport through an isolated vortex core in clean % Cdre " “\S- |

(both elastic and inelastic mean free pdthd) type-Il su- 7 < v >

Normal metal X, 0 + X

perconductors in the low-field limit of separated vortices
(H<H,,) and develop a systematic approach for calculation FIG. 1. Quasiclassical trajectories in a superconducting slab
of the thermal conductance along vortex cores. We study th&ith a single vortex line for incidenss_ , (dashed ling and scat-
transmission of an electron wave incident on the supercontered,s, , waves(solid line, positivex region together with the
ducting slab placed between two bulk normal-metal elecextended trajectorysolid line, entirex axis).

trodes assuming ideally transparent boundaries and neglect-

?”9 'the norma}l scattering. Considering two extremes Ofvhere &y,&z are the Pauli matrices, and,=(%#/2m)(1/r
infinite and finite slab thicknesses we confirm the |ntU|t|ve+ZeA¢/ﬁc) is the superfluid velocity field. The character-
picture discussed above. For a not very thick slab, the transgtic |ength scale for the magnetic field around the vortex is
mission is determined by the semlc!assmal resonan_t tgnne_-b-f the order of the London penetration depth, which is

ing thrc_>ugh the energy gappeq region. The transmission IR, >¢ in extreme type-ll superconductors. Fa[>¢ the
proportional to the large Sharvin conductance and is domimagnetic field is almost uniform near the core and the vector
nated by the trajectories that go almost parallel to the Vorte(ﬁotential isA = Br/2~ (H/H,)r/ &2 ForH<H,,, it can be

axis. However, the drop-off of the conductance is more rapi eglected in the expression fot as compared to the large
gradient of the order parameter phageéo 1/r.

than that found in Ref. 3 for a model of a normal core: it is
Let us consider a cylindrical electronic wave incident on a

proportional tod 8 for not very larged and tod~? but with
4
a much smaller temperature prefactd/Tc)" for largerd.  gynerconducting slab placed between two normal metal half-

Finally, it goes over into a thickness-independent expression_;,paces(see Fig. 1 An external magnetic field is applied

Eq. (1), with further increase in the slab thickness. along the z axis perpendicular to the normal-metall
superconductor boundaries. Restricting ourselves to the low

Il. SINGLE-ELECTRON TRANSPORT: QUASICLASSICAL magnetic field limit we study the scattering problem in the
APPROACH presence of a single isolated vortex line. To calculate the
transmission and reflection probabilities we use a quasiclas-

A. Transmission and reflection probabilities ) AT
sical approach and look f@f in the form

We start with the Bogoliubov—de Gennes equations

1 e \2 U=e*ZHM (k,r)wH)+e*2H @k r)w ),
ﬁ —iﬁV—EA —Eg|u+Av=eu, (2
where H(*? are the Hankel functions|=\u?+1/4, k?
1 e \2 +kZ=kZ, andw=(w,, w,) are slow functions of andz
ﬁ( —ihV+ EA) —Epjv—A%u=—ev, (3)  satisfying the equation
wherg (u,.u) are the par_ticlel?ke and holelike pgrts of the _ihZq, oW ™) k2K, oW uh? <
quasiparticle wave functiorh is the vector potential of the * - — 0, €— wi=
m ar m 0z 2mr2

magnetic fieIdB=B(r)2, and A is the gap function for a
\iortexiune. The gap function can be written in the fom +i&y|A|\7v(i)=0, (4)
=|Ale'?, where the absolute value of the gay depends
only on the distance from the vortex axis. Inside the core _ 272

o . ' where = K= u2r?. We
r<§, itis |A|~Aqr/é. For distances larger than the coher- Cr o
ence lengthé the gap saturates at its value in the bylk]
—Ag. Choosing the gaugeA,=Ay(r), A,=A,=0 we
search for the solution with a given angular momenfum

now introduce new
coordinate¥ x=r?—b? b=—ul/k, so that q,
=xk, /Ir, dlor=(r/x)dlox. Finally, we define the trajecto-
ries z=zp+xcotd for w(*), respectively. One hasix
= *+ds. sinf, dz=ds. cos#, wherek,=kg cosf andds.. is

u=eid2tiney =g id2tingy the distance along the corresponding traject@se Fig. 1
. The differential operators in Ed4) transform into the op-
The equation fot/=(U,V) reads erator i (A%kg /m)(d/ds.) along the corresponding trajec-

tory. The order parameter is now a function of the distagice

a2l o 1o (mo.m \2. .1 . . on the trajectory]A|=|A[r(s)]|, which is simply |A(x)]
m — Uy Us — Fur+ TJ”TZzVS) U=KelU| +ioy|AlU since|A| is independent of. Projecting the trajectory on the
o plane perpendicular to the vortex axis we replkegd/ds..)
= o,€el, with =k, (d/dx) and arrive at the equation
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in2k, dw™) A%kb N\ L
¥ —0, et ————— W(*)+|Uy|A|W(*)
m  dx 2m(x?+b?)
=0. (5)

i1 is a superposition of a wa\w(*) radiating from the vortex
into the bulk and a wavev{>) incident on the vortex. The

regularity atr=0 requweszv(*)(o,z)=\7v(‘)(0,z) at the clas-

sical turning pointx=0. The coordinate has been defined

positve so far. Let us now put w(*)(x,z)
=w(x,z), W((x,2)=w(—x,z). The functionsw; xx,z)
are continuous and satisfy E) with the upper sign along
the entirex axis (the extended solid-line trajectory in Fig). 1
We introduce new functionsy and ¢ through w;

=elt72 w,=el"172 and arrive at the equations
dyp 2me b 2m|A| ©)
—= —~ cos7,
dx 72, (@+b?) kK
d¢ 21
d—x——m|A|h k, *siny. (7)

The requirement thatv vanishes atx— *t o is =% /2

PHYSICAL REVIEW B 68, 054528 (2003

FIG. 2. The coordinate dependencerpfor y+ 7,=0. The full

line is for y>0 while the dashed line is foy<0.

—/2, andw diverges again. However, i+ 7,=0, the
value = m/2 is stable(see Fig. 2 and the wave function
decays forx— oo,

The solution afx| <x, for negative Xs obtained from Eq.
(8) by replacingK(x) with —K(x). The function is close
to — /2 for b<<|x|<X,. Its behavior for|x|=x, is deter-
mined by Eq. (11) where C=2/(y—ng). This yields
—3m2< p(—0)<—7/2 if y—ny>0. The functiony ex-

—(€/]Ap) +2k. These values, however, are not stable for ahibits a solitonlike behavior shown by the solid line in Fig. 2:
general choice of the integration constants. A general solut slips down from — /2, crosses—« and finally ap-

tion for not very largepositive xis

X
7=arctan, + 7ee?K

2m b ,
+ _|A(X/)| . e2K(x)72K(x ) dX/, (8)
h2k, X'
where 7, is a constant and
X
K(x)=mfr2k;lf |A(x")| dx’. 9)
0

For 7o<<1 ande<<Ag, the functiony is close to/2 for b
<X=Xq Wherexy~ &In(1/]y|) and

yzszfzk;lf [e—(b/x)|Al]e KX dx. (10)
0

v measures the distance from a CdGM levegt 0 whene
=€,(k,). Equation( 8) is valid for y<1, which generally
holds if e<A,. The functions grows with|x| at distances
XZ=Xg. Its behavior in the regiom~1 is found from Eq(6)
neglecting smalk andb/x:

tan

7 _) Ce?K().

5 (11)

Matching with Eq.(8) at é<x<<x, givesC=(y+ 7)/2. For
v+ n9>0, the functiony—3#/2 while w diverges expo-
nentially asx—oe. If y+ 77<0, the functiony approaches

proachesy(—«»)~—3mx/2. The wave functiorw diverges.
Similarly, — 7/2< p(—)</2 if yv— n,<0 so thatw also
diverges(dashed line in Fig. 2 The value n=—7/2 is
stable if onlyy— n,=0. The wave function thus decays at
both ends if y=#5,=0, which corresponds to a standard
CdGM state.

The solution for a slab is a superposition=A_w

+A<W whereA.. . are constants. The functlomg2 have
no=—1v, they decay forx> & with 7 (+|x|)=n/2, while

7-(—1x|) for negativex obeys
1 T
o (—Ix) = == e 2K(Ix))
tan| 5 7-(=[x[) 4} y ‘e (12)
according to Eq.(11). For y#0 the phasezn.=—3m/2

+2mn at x= —|x|— —«. Equationg(7) and(11) yield

Y2+ e~ 4K
1+ 2 '

~ ) =K([x)+ 5In

Forx=|x| itis simply ¢~ (+]|x|)=—K(|x|). The other func
tion wi (X) =w7 3 (—X) grows atx— + .

The particle transmissioBb . and hole(Andreey reflec-
tion R,, probabilities, =R, +D,, are determined in such a
way thatD.=|w,(z=d)/w,(z=0)|? provided there are no
transmitted holesy,=0 atz=d. We denotex_ andx, the
x coordinates of the end points of the trajectoryat0 and
z=d, respectively, such thattanfé=x,—x_ (see Fig. L

For trajectories crossing the vortex axis, <8,
<dtan#, x_=—|x_|, we find
D.=(y?+a?) cosh 2[K(|x,[)+K(|]x_[)]. (13
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The half-width of the energy levey=0 [B%(x:) = B2 (x:)]?
a= cosh K(|x.|) = K(|[x_)1/ cosh K(|x. |)+ K(|]x_|)] BB (X )~ B (X )B_(x )&
is proportional to the escape rate of excitations through the X4
gapped region. Foy—0, the transmission becomes e=2 fx, A dx.
D= cosh 2[K(|x,|)—K(|x_])]. D, oscillates as a function oo whose magnitude isb

~(el|A])(d/€)>1. Oscillations thus average out after sum-
ming up various trajectories yielding an averdyg~1. For
X>X., particles experience Andreev reflection from vortex
core boundaries, and.=0.

It is D=1 for resonant trajectories that go through the
middle of the vortex|x_|=|x.|=(d/2) tand. For trajecto-
ries that do not cross the vortex axis, ,x, <0 or x_
>0x,>dtang, we find

De: COSh*Z [K(X+)_ K(X_)] B. The heat current
The energy current alongis
The largest transmission takes place for a resonance tun-
neling when the energy coincides with one of the CdGM ) dk,
levels in Eq.(13). D, is then unity if the trajectory crosses le= J’ d-r E J 2mm
the vortex at the half of its length. However, the number of g

e
€, “Zkz( fk,— EAZ) Ui, N( €,)

transmitted particles is small since the width of the resonance N e

a is exponentially narrow. The exponent though corresponds € Ui ikt EAZ Vu[l=n(=e€u)]). (14
to only a half of the slab thicknes2, not to the entirel as ) ) o

it would be without vortices. Particlesu* u with the distributionn(€) carry the energy* e

The transmission is not exponential for trajectories that govhile the holesv*v with the distribution +-n(—e€) carry
close to the vortex axis almost parallel to it, i.e., at sndall the energy—e. If the electrodes are in equilibrium,—n
It is this contribution that determines the transport replacing — €) =n(e) in each electrode. For a finite slab thickndss,
the exponential dependence dmwith a power-law behavior. can be expressed through the transmission and reflection co-
Consider these trajectories in more detail. Their wave funcefficients,
tions are localized inx within X\ =#%[kg/7mA’(0)]Y26Y?

~£6Y2 [see Eq(9)]. If a trajectory crosses the vortex axis, le= > J delv,|[eny(€)— eRy[1—ny(— €)]— eDeny(e€)]

K(x:)=K(x_[)=Xo (Md/A%Kke)A'(0)~xod/ &2,

dQ
=fo _|U | f dzrf D G(nl_nz)df, (15)
K(|x. )+ K(x_|)~8 (mdh2ke)A’(0)~d261 &2, v=02m ©
wherexy=(|x_|—|x.|)/2 is the middle point of the trajec- wh_ere the.sum is over all the traject.orie&' is the single-
tory. Therefore, the transmission coeffici@t~1 only for ~ SPiN density of states at the Fermi level, ang=[e“

-1 T a€lT 1 Cstribt ;
trajectories that deflect from the vortex axis by not more thari™ 11~ andnp=[e“ "2+ 1]~ are the distribution functions
xo~£2/d and have very small incident angigs- (&/d)2. in the electrodes 1 and 2. The first two terms in the upper line

This behavior holds as long ag<1. The estimate shows ar€ due to incoming particles and Andreev reflected holes on
that y~ (e/A) 6~ 2, which becomesy~1 for d/¢=(Ale).  ©ON€ side of the slab. The third term is due to transmitted

Therefore, for larged, the behavior of the transmission co- Particles from the other side.
efficient changes. Only those trajectories contribute that go almost parallel

The new dependence can be easily found for the limi@nd close to the vortex axis. We distinguish two limits:
d/¢>(Al€). In this case Eq(5) can be solved in a WKB  VerY low temperatures or relatively thin slabs[T.<¢/d
<1 and(ii) thick slabs or moderate temperatures; W T,

>¢/d. In the limit (i) of not very thick slabs, the trajectory
B « deflection from the vortex axis isxo~é&%/d with 6
_( *) exp( +i f A dx), ~(&/d)2. AssumingT>T./(kg£), the heat current through

+=

approximationw=A_,w, +A_w_ where

=3

B= 0 one vortex is
B.=[1+E—|A[ el A=mye—|A[Zh%, . le~veh*vEd O[A"(0)]4(Ti—-T)). (16)

Here |A|=|A(x)|. This solution applies fotx|<x, where The thermal conductance of an isolated vortex is

|A(x.)|=e. Thereforex.~(A’) le. The angles for the tra- _ 2 6

versing trajectories aré~x_./d~(&/d)(e/A). One can eas- e~ (T17) (ke £)7(&1d)™

ily check that the centrifugal energy and the term with theThis is equivalent to the number of channels
order-parameter derivative in E@5) are of the order of ~(kp&)?(£/d)® open in the vortex core.

veb/x < e and can be neglected. Requiriwg=0 at the exit The d~® power law changes for largek In the limit (ii)
point x=x_ we find the transmission coefficient whenT/T.>¢&/d, Eq. (15 can be evaluated by counting the
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freely traversing trajectories with .~ 1. Consider a point at classical approximation. The energy current Et4) be-
the vortex-core cross section of an aranear the entrance, tween the two electrodes becomes
z=0. The exit area is visible from that point at a solid angle

242
60 ~xZ/d=. Therefore, dk,

Je
_ Ieu
'5_2,:‘ fef‘n(eﬂ)akz 2k

Ig""ﬂ'VFUFdiz(A’)illf 65(n1—n2)de. (17)
0

Excitations with positive group velocity,= de,, /%1 9k, have

a distributionn,; as in the electrode 1. For those with nega-
_ 2 2 4 tive group velocity the distribution is, as in the electrode 2.

ke~ (T11) (ke )2 (E1d)*(TITo) Thorefors

This yields the single-vortex conductance

with the number of channeN~ (kg&)?(£/d)%(T/T)*.

Our semiclassical approach requires eitthgk>1 or Je
kix.>1, which restricts the number of channels to e le= >, J €, [Ny(€,)—Ny(e )]‘_M
>1. This puts an upper bound on the slab thickness:dFor z Jk=0 * a # ok,
=d* the conducting channels corresponding to freely tra-

versing trajectories disappear and the single-particle transBy the order of magnitude, the heat current through a single
port is entirely due to the nonquasiclassical drift along the,gtex is L e~ (T/R) (Ke&)(TIT)(T,—T,) with the thermal
vortex core states described by the Landauer-type formulggnductance given by Eql).

Eq. (1). Let us define a temperatufle’ = To(kg£) . For The electron transport in Eq19) is determined by inci-
T=T*, the critical thickness ie* ~ £(ke£) (T/Tc)?, while it gent angless~1: Particles that penetrate into the core at
is d* ~&(kgé) Y for T=T*. In fact, relative contribution of |arge angles get trapped by Andreev reflections and drift
freely traversing trajectories becomes small C(_)mpared to thE§|0W|y along the vortex. This process yields a small but
of the Landauer expression already tbessentially shorter  thjckness-independent transport which dominates for very
thand*, i.e., much before the semiclassi(_:al approach breakgjck slabs. Comparing Eq$17) and (19) one notices that
down because the number of conducting channels corrgy~, /y, is the effective transmission coefficients for the

dk,
2mh’

(19

sponding to Eq(1) is N\ >1. Andreev trajectories in the vortex core.
As we mentioned already, the single-particle conductance
lll. LANDAUER FORMULA: saturates at the Landauer expression with increadingis
BEYOND THE QUASICLASSICAL THEORY also required that the inelastic relaxation length is larger than

. . . d. For electron-electron interactions e~vehEg/T?
sinlgnletzllsec?reocr??rgnvggofthigvéxtggtlyfgresir\i/beg)é é?(t:rlfesleadtQSJ ¢(ke)(To/T)®, which well exceedsd*. The electron-
formula(1). We establish first a simple identity for the local- phonon relaxation length is proportional @(T)" and can

ized states. Equation®) and (3) have eigenvalues,,(k,) also exceedl* for low temperatures. However, both inelas-
- = 9 ur iz tic and elastic scattering may affect the drift along vortex-
for the CdGM bound statas, , vk, that belong to a given

¢ . A core states whedi<d.; where the effective lengtt.; can
momentumk, along thez axis. Calculating the derivative g considerably longer thad since the drifting particles

with respect tdk, from the both sides of Eq¢2) and(3) and  traverse much longer distance on their way from one end of
using the normalization of the wave functions, we find forthe channel to another due to Andreev reflections. The effects
the localized states of scattering on the particle drift along the core states will be

studied elsewhere.

e e
2
f U::kz ﬁkz— EAZ u,u,kz_U:ikz ﬁkz'f‘ EAZ)U"’“kz d-r
IV. CONCLUSIONS
m de,
=7 K (18) In conclusion, we show that the low-energy single-
z

electron transport along the vortex core in a clean supercon-

This identity demonstrates a huge cancellation in the leftductor is similar to that in a mesoscopic channel where
hand side: each term there is by a fadtp€ larger than the the conductance is given by the Landauer formula
right-hand side. Within the quasiclassical approximation thevith CdGM states playing the role of transverse modes.
left-hand side vanishes for an infinite vortex line as a directFor a finite slab thicknesd, the vortex core behaves like
consequence of an approximate electron-hole symmetran Andreev wire: the thermal conductivity drops off as
Note that the cancellation does not take place for a finited~® for not very thick slabs and a$ 2 for largerd. These
thickness slab where the CdGM states are not truly localizedesults allow us to conclude that single-electron transport

Equation(18) shows that in contrast to the electrical cur- parallel to vortices in clean systems is strongly suppressed as
rent the energy flow is determined by the group velocity ofcompared to the dirty limit, which is in a good agreement
excitations and this is why the conductance in ED. is  with the experimentally observed suppression of the thermal
much smaller tharkg,. Now we can use E¢18) to derive  conductance in clean superconductofs.
the thermal conductance for a thick slab beyond the quasi- Equations (16) and (17) apply to ideally rectilinear
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vortices. The Andreev-type thermal conductance is very

sensitive to a vortex curvature: It is blocked if vortices are
bent by an angle exceedirgg~ (£/d)? or 6.~ (£/d)(T/T)

for the limits T/T < &/d or T/T > &/d, respectively. This is
distinct from the Landauer expression, E49), which is

PHYSICAL REVIEW B 68, 054528 (2003
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