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The low-temperature phase diagram of one-dimensional weakly disordered quantum systems such as charge
or spin density waves and Luttinger liquids is studied Hulkfinite temperaturaenormalization-grougRG)
calculation. For vanishing quantum fluctuations this approach is amended dwaatsolution in the case of
strong disorder and by a mapping onto Brgers equation with noisi the case of weak disorder, respec-
tively. At zerotemperature we reproduce the quantum phase transition between a focaided and an
unpinned(delocalizedl phase for weak and strong quantum fluctuations, respectively, as found previously by
Fukuyama or Giamarchi and Schulz. fitite temperatures the localization transition is suppressed: the random
potential is wiped out by thermal fluctuations on length scales larger than the thermal de Broglie wavelength
of the phason excitations. The existence of a zero-temperature transition is reflected in a rich crossover phase
diagram of the correlation functions. In particular we find four different scaling regiotiasaical disordered
a quantum disordereda quantum critical and athermalregion. The results can be transferred directly to the
discussion of the influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of
a commensurate lattice potential. Applications to related systems are discussed as well.
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I. INTRODUCTION footing}2 which is the main aim of this paper.
Experimentally, quasi-1D behavior can be seen in real
The collective behavior of condensed modulated strucmaterials, e.g., in whiskers, hairlike single-crystal fibers
tures such as charge or spin density wavessuch as NbSg with a transverse extension smaller than the
(CDW's/SDW'9),2% flux-line lattices*® and Wigner correlation length or in chainlike crystals with weak inter-
crystal$ in random environments has been the subject ofhain coupling. In the latter case there is a large crossover
detailed investigations since the early 1970s. These were méngth scale up to which 1D behavior can be obsefved.
tivated by the drastic influence of disorder: without pinning  The results obtained for the CDW's or SDW's have a
CDW’s would be ideal superconductors whereas type-1l sul@rge number of further applications on disordered quantum
perconductors would show finite resistivity. In three- systems: they relate, e.g., to the localization transition of

; 1 1iq 10,11 i l4 ; ; 015
dimensional systems the low-temperature phase of the%ﬁ;ttlnger liquids,®"* superfluids, tunnel junction chain&;

structures is determined by a zero-temperature disorder fixe sephson coupled chains of these systems, if the coupling is

. o : treated in mean-field theoH,and CDW's in a lattice poten-
point resulting in quasi-long-range order and glassy dynam;

; ) ial. H ill h inol f CDW'’s i

ics (for recent reviews and further references see Refs. 4,5tIa owever, we Wit use the terminology of C s in
. . o L . .~most parts of this paper.

In two dimensions this fixed point is extended to a fixed line

. X " Z The remaining part of the paper is organized as follows:
which terminates at the glass transition temperatire. the In Sec. Il we give a detailed introduction to our model and

low-temperature phase, correlations of the positional ordefe notation used in this paper. We also briefly discuss the
decay slightly faster than a power law and the linear resisinfiyence of Coulomb interaction on the properties of the
tivity vanishes? system. In Sec. lll the influence of the disorder is studied in
In one dimension the situation is different: the glass temyetail. Using an anisotropic momentum-shell
perature is shifted tad=0. Nevertheless, there remains arenormalization-group calculation, in which the full Matsub-
residual trace of disorder which is reflected in the low-ara sum over frequencies is performed, we obtain flow equa-
temperature behavior of spatial correlations and theions for the effective strength of the disorder, thermal and
dynamics®® Clearly, at low temperatures also quantum fluc-quantum fluctuation§.e., the interaction strength in the case
tuations have to be taken into account. Disorder and quantuif Luttinger liquid9. These are discussed first in the case of
fluctuations in one-dimension&llD) CDW's at zero tem- zero temperature and agreement with previous results is
perature have been considered previousige, e.g., Refs. obtained'®!! At finite temperatures the disorder always
10,19 and an unpinningdelocalization transition as a func- renormalizes to zero. In the classical limit two more methods
tion of the strength of quantum fluctuations was found. Finiteare applied:i) at low temperatures and strong disorder the
temperature effects were partially incorporated by truncatingground state of the model is calculated exadtiiy); for weak
the renormalization-groufRG) flow at the de Broglie wave- disorder and strong thermal fluctuations a second RG calcu-
length of the phason excitatiohsHowever, for a complete lation, based on the mapping onto the Burgers equation with
study of the thermal to quantum crossover, quantum andoise, is applied. Using all these findings, the phase diagram
thermal fluctuations have to be considered on an equalf the density-density correlation function is studied in Sec.
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IV. The main result of this section is the calculation of the velocity. p; is proportional toA|, the CDW gap or the am-
low-temperature quantum crossover diagram for oneplitude of the compleXmean-field order parameter
dimensional CDW's. In Sec. V we discuss briefly the appli-

cation of the results to superfluids by using the mapping to At =[A(x,t)|e' e, 2
CDW's. Some of these results were previously presented if s the condensate density € 1—f is the so-calledvoshida
Ref. 16. function related to|A| by

The influence of a commensurate lattice potential on a

free density wave is considered in Sec. VI. The full finite T (|Al/h)?
temperature renormalization-group flow equations for this  f(T)=—~ > (ot (AR wy=2mnT/h.
sine-Gordon-type model are derived and the resulting phase “n L@n 3)

diagram is discussed.
In the appendixes we present the calculation of theThe condensate density approaches 1 Ter0 and f(T)
renormalization-group flow equations and the derivation of=2(1—T/TMF)~|A|? for T—-TMF. TMF denotes the mean-
the correlation function in the strong and weak pinning limitfield transition temperature. For quasi-one-dimensional sys-
in some detail for the interested reader. In Table Il we list alltemsp, has an additional factaf™? (the area perpendicular
symbols used in this paper with corresponding references itp the chai.
the paper. Note that Eq.(1) is correct for arbitrary band filling and,
to be more precise, is the particle density of the charge or

Il. MODEL spin carrying patrticles. In Eq1) we omitted higher harmon-

ics «cognpo(x,))+Qx]} with ne{2,3,...}, since these
more strongly oscillating terms give close to the zero-

In this section we derive the effective Hamiltonian which temperature transition only small contribution in the renor-
will be the starting point for our further treatment. The strat-malization process, compared to the leadingl contribu-
egy of the calculation is therefore separated into two steps. Ition. They will therefore be neglected throughout the paper.
the first step the system is treated in a mean-fipléH) type  The particle current density follows from Eq. (2) as j
approximation applied to a microscopic Hamiltonian. This:_po('p/Q_
leaves us with a slowly varying complex order-parameter ecause k- modulations of SDW's or CDW's are also
field for which we derive an effective Hamiltonian. The sec- hossiple!® we introduce the factop in the argument of the
ond step involves the consideration of the fluctuations of thignogylating cosine function, i.e., for CDW’s and SDVyss

order parameter, whic_h is the topic of this paper. ~usually 1, but can also be 2 or greater.
We briefly summarize now the result of the mean-field
calculation: Well below the mean-field condensation tem-
peratureTy e of the CDW, the underlying lattice will be
periodically distorted with a period which is related to the In the following we use a minimal model for the low-
Fermi wave vectokgs by \=/ke. This distortion of the €nergy, long-wavelength excitations of the condensed charge
lattice leads to the formation of a gap in the dispersion reladensity wave. Since fluctuations in the amplitude are
tion atk= = kg which is (in one dimensionproportional to ~ suppressed, because these are massive, we take into account

the amplitude of the lattice modulation. For small displace-only fluctuations in the phase. Clearly, such an approach
ments (which are typically smaller than 1% of the inter- breaks down sufficiently close to the mean-field transition

atomic spacinlf), the increase of the elastic energy is temperaturdy'™ . Neglecting fluctuations ifA|, the Hamil-
smaller than the gain of electronic energy due to the formatonian of the CDW is given by
tion of the gap and hence an instability is favored. The period o
of the CDW depends on the band filling factovia ke H=Ho+Hyt Hu (4)
In (quasijone-dimensional systefsalso SDW's can be . L ¢
found, but in contrast to CDW's they arise due to electron- HOEJ de
electron and not to electron-phonon interaction. A SDW can 0
Therefore the spatial modulation of SDW'’s is characterized
by a wave vectoQ=2kg, as for CDW'’s. (4b)
The charge or spin densiy(x,t) can be written in the
@) H, describes the phason excitations of the CDW, where
wherep,=Qf(T)/m andp,=2|A|/(7gve). gis the dimen- =(fvg/2m)f(T) denotes the elastic constantv
sionless electron-phonon coupling constant apdhe Fermi =vF/\/1+(2|A|/hpr)2/(gf) is the effective velocity of

A. charge and spin density

B. Hamiltonian

2

=q/\) and is in general at arbitrary band filling incommen- with
surate with the undistorted latti¢evith lattice constant).

(% ﬁ’2+<ax$o>2} (42
be ciﬁnsi?ered_todconsistI ofttwo CDW'’s, olge fc\%r.spg—?pzand . Nimp
another for spin-down electrorisee, e.g., Fig. 5 in Ref.) 1= fo dx UO0p(x),  U(x)= ;1 U, 8(x—x)),
form>18

p(x,1)=[1+Q ' d,e(x,) {po+ p1cog pe(x,t) + pQX]},

Ho=— dex Weog qe(x)]. (40
0
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the phason excitations with,o the phonon frequency. For v to the microscopi¢mean-field-like theory lead to the con-
CDW'’s (2|A|/ﬁpr)2/(gf)>1 is typically fulfilled and clusion thatk andt diverge by approaching'g’”:, whereas

hence quantum fluctuations are weak. the ratioK/t remains finite.
P is the momentum operator, corresponding to the phase
@, with the standard commutation relatigi®(x),o(x")] C. Coulomb interaction
=(Ali)6(x—x"). We could also add &oulomb interactionterm to our

H, results from the effects of impurities with random po- model (4) which can be written as
tential strengtiJ; and positionsc; . The potential strength is

characterized byJ;=0 andUinEUiZmpﬁi,j, and includes a .1 d dx’ S (XY A 10
forward- and a backward-scattering term proportionapgo He=5| dx| dx'p(x)Ve(x=x")p(x"), ~ (10)
and p,, respectively. The disorder average of the impurity _ _ . .
potentialU(x) follows then to be given by (x)=0 and where V. is the Coulomb potential. In all dimensions the

unscreened potential has the foefir . If we assume that the

UiZm quasi-one-dimensional system has the finite wigltiv, can
U(x)U(y)zI—p S(X—y). (5)  be written a&"??
imp
2
We will further assume that thg mean impurity distance Vg(x)= _ E 2 e'k"V(C’(k) (11)
limp=L/Nimp is large compared with the wavelength of the x2+% L%
CDW and, in most parts of the paper, that the disorder is
weak, i.e., with
1<1inpQ=<CQ/(Ujmppy). (6) Ve(k)=2eKo(|¢K)), (12
In this case the Fukuyama-Lee length whereKj is a modified Bessel function of second kind with
Ko(X)~ —In(x) for x<1.
cVlims | 2° In general the Coulomb potential is screened and can be
L= — (7)  written a$®
Uimpp1P
. . . . : VO k)
is large compared to the impurity distanicg,, . V.(k,) o (13)

The third term in Eq(4), H,,, includes the influence of a
harmonic lattice potential. This term will be discussed in
Sec. VI in greater detail. with the momentum- and frequency-dependent polarization

Our model(4) includes the four dimensionless parametersoperatorlI(k, ) =(p(0,0)p(k,®)).

If we only consider the static case=0 we can distin-

T 1V (Kw)

t=T/mAc, (88  guish two limiting cases: First, if the typical ranyg;; of the
screened Coulomb potentid, is much smaller than the
K=#hv/mc, (8b) mean electron distance, the potential can be assumed to be a

6 distribution andH . can be approximated by
2 (Uimppl)2
u =

: (80 N f(T 2
A3mc i, He~ 7)( dx(%’?x@(x) +eo (14)
w=W/mcA?, (8d)  with y=(1/%)f dxV,(x). The cos terms-(- -) from the den-

sity can be neglected due to strong fluctuations. Therefore
the Coulomb interaction gives only an additional contribu-
tion to the elastic constant of the initial modet
=(hvgl2m)f+hyl w2, For x>0 the Coulomb interaction is
repulsive, which leads to an increase ofind therefore a
decrease of the dimensionless paramKtere., the quantum
fluctuations will be reduced by the Coulomb interaction. In
the casey< 0 (attraction, K will be increased. Keeping this

which measure the strength of the thernt3| Quantum K),
and disorder fluctuation@) and the periodic potential(),
respectively.A = m/a is a momentum cutoff. Note that for
noninteracting electrons, i.ev,=vg, K takes the value 2
(and not 1 as in the usual Luttinger Liquid notatioifhe
classical region of the model is given By<t which can be
rewritten as the condition that the thermal de Broglie wave

length .
g consideration in mind, we will not further include,. in the
A= Bo=KI(tA) 9) model explicitly.
In the other case—with weak screeninyfek)~vg(k)
of the phason excitations is small comparedato shows the dispersion given in E(L2) and in general, the

At T=0, K values of the order I—10 ! and 1, have details of thek dependence depend not only on the transverse
been discussed for CDW's and SDW's, respectivéf/It extension{ of the quasi-one-dimensional system under con-
has to be noted, however, that the expressions relataml  sideration but also on the screening lentfth:
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However, the logarithmi& dependence will only weakly which will be used throughout the paper—beginning here.

affect our RG analysis, but may suppress phase transitionsurthermore all lengthge.g., correlation lengths;, Lg, ,

as discussed later in Sec. Il B. limp, andL), wave vectorge.g.k, kg, andQ), and Matsub-
Coulomb interaction is also important if one considersara frequencies are dimensionless accordingly, from now on.

multichannel system$ or the effect of the noncondensated Additionally we rescale the elastic constant

normal electrons.
Ac—c,

IIl. RENORMALIZATION-GROUP TREATMENT
OF DISORDER

for convenience to avoid the appearance\of
Integrating over the high-momentum modesgdik, 7) in
a momentum shell of infinitesimal width d&|q|<1 but

arbitrary frequencies and rescaling—x’'=x/b, 7—7’

In order to determine the phase diagram we adopt a stan= /b we obtain the following renormalization-group flow
dard Wilson-type renormalization-group calculation, whichequationgup to one loop

starts from a path-integral formulation of the partition func-

A. Flow equations

tion corresponding to the Hamiltonid#). We begin with the dt
renormalization of the disorder term and put0 in the m:t' (199
following. The system is transformed into a translational in-
variant problem using the replica method, in which the dis- dK 1 K K
order averaged free energy is calculated, using s Ep“uzKBO( p2K, E) COch_t’ (19b
F-—TinTre ¥=—Tim=(Tre S""-1), (19 UL PO L SO, (199
n—0 dl 2 h2_t '
which defines the replicated actigh™. S is given by do
- (190

1
SO=3 T[go,ﬁmﬁjf,mm(ﬂ]m[%(r'n,
a6

where L, is the Lagrangian corresponding t’élo, I,
=["fdr anda, v are replica indices. Using E¢8) and con-
sequently neglecting higher harmonicsp@ mode$ one
finds

Hul o) THL@(7")]

U2 52 rL
— ZimeP1 f dx{ cosp @o(X,7)— @,(%,7')]
2|imp 0

2p5 ,
+ Wﬁxfpa(xﬂ)ﬁx%(xﬁ )(- 17

P1

Together with Eq(16) one obtains the following form:

S 1 LA K/t
- = 2 2
) JO <:leO A7 [(9x0a)*+(9:00)%1 80
1 (Kt
— o | dr'{uPcosplea(x, 1)~ ¢, (X, 7')]
2K Jo

+0-(9X()Da(xlT)anDV(XlT,)}] ’ (18)

with o=2u?(poA/p1Q)>.

wherel =Inb. For details on the RG calculation we relegate
to Appendix A where we have written the RG flow also for
dimensions &|d—1|<1. Note that the renormalization-
group equation for terms in the replica Hamiltonian which
follow from higher-order harmonics in the charge density
look similar to those presented in Ed.90 with p replaced
by np, n>1, integer. These terms are therefore negligible
close to the quantum phase transition considered below.
For legibility we have introduced the following functions:

y »  gi(7,X) cosity— )
Bi(y’y):fodTJo dXY(T,X) costy
y 2
2

go(7,X) = 8(X) 7°.

Note thatBy(p2K,K/2t)—0 for K—O0 (see Fig. 5 in Appen-
dix A).

The strength of the thermal fluctuationis only rescaled,
since there is no nontrivial renormalization ofi.e., of the
elastic constant) because of a statistical tilt symmetry.
Note that Eq.(18) is written in rescaled dimensionless pa-
rameters and the different renormalization of the kinetic and
elastic term is reflected in the different renormalization of
andc, i.e., K andt, respectively.

(20

mX mwT

vl4
1+ cosh— — cos—) } , (22
y y

Y(7,X)=

with

Note that we introduced dimensionless spatial and imagi- From the flow equation fou? [Eq. (199] one sees di-

nary time variables,

AX—X, Avr—r,

rectly that, depending on the sign of the prefactor, the behav-
ior changes from increase for smalandK to decrease for
high K or t.
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TABLE I. Notation guide. metric, circular shape of the “momentum shell,” i.e., treated

the model as effectively isotropic in tH&+1)-dimensional
Symbol here Giamarchi and SchufzRef. 11 Haldane, Ref. 32 space time.

This procedure may be a good approximation at zero tem-

¢ V29, V2Imi.¢ 6= mpox, 10 perature, but if one considers finite temperatures this does
P K2 —(hlm) Ve not hold anymore, since the extensionsrirection is now
K oK JoiTon finite. As a result, there is a regiom/L <|k| < /N where

P N fluctuations are mainly one dimensional and purely thermal.
v u, \/vj_vN This region was disregarded in previous treatments. As we
c hu, /27K, hoylm will see, fluctuations from this region have an important in-
0 1 ) fluence on the overall phase diagram.

The critical behavior is, however, the same: there is a
aCharge operators. Kosterlitz-Thoules$KT) transition at the phase boundafy,
between a disorder dominated, pinned and a free, unpinned

There is no first-order RG correction toand the change Phase which terminates in the fixed poi{t =6/p?. One can
of ¢ with length scale is simply given by rescaling, see Eq.derive an implicit equation foK,, by combining Eqs(23a
(19d). The two-loop contribution tor is much more in- and(23b) to a differential equation
volved than the one-loop contributions for the other flow
equations and gives no qualitatively different result for the d_Uz_ 1
flow of o. As seen from Eq(19d), the forward-scattering dK p2 K
amplitude always increases age' on larger length scales
and is therefore not well controlled in the RG sense. ButWhich has the solution
since the flow ofo does not feed back into the other flow .
equations it has only minor relevance for our considerations, 2 , Ky [K=Kp K
and indeed, we can get rid of the forward-scattering term u (K)_uo_pzn —Ime ] (26

K* Ko
f/7U(X)(d¢l 9x) by introducing the fieldp,(x) by?® ’

(K=K3), (25

whereuy andK, denote the bare values of the disorder and
- - x quantum fluctuation, respectively, ang=By(p?K} ).
P(X)=@p(X) = @1(X), @f(X)= fo dydy), (220 Then K, is implicitly given by

where c(x)=U(x)f/mcA, with c(x)=0 and c(x)c(x’) K (KU—K: Ku> 27

=(m/2)o5(x—x"). This can be easily verified by inserting UA(Ky) = 02 ke e
this decomposition ofp(x) into the initial Hamiltonian(4) ! !
written in dimensionless units, and using E§) and the Where the initial condition*(Ko=K})=uj=0 is used. The
definition of o for deriving the averages afx). Note thatx ~ KT-flow equations aK{ can be recovered by defining
is dimensionless. 5
ZyEﬁ—L% 2 25§p4nu2
B. Zero-temperature—a review 2 ' 2
The special case=0 was previously considered, e.g., in with |y|<1. This yields
Ref. 11(for a better comparison see auntation guidegiven
in Table ). dy )

The flow equations foK andu at zero temperature read ar - X (283
dK 1 dy?
7 =5 PUPKBo(p?K %), (233 d_XI — 2922, (28b)
du? p2K which are exactly the flow equations obtained by Kosterlitz
ST =|35|v (23  and Thoules$®
Under the assumption that a small deviation from the di-
with mensiond=1 changes only the naive scaling dimensions of
the fields, our results can be extended alsatol+ € di-
N T 2 1 — vl mensiongfor details see Appendix)BThe zero-temperature
BO(V’OO)_L drre 1+ r/2] (24 phase diagram is modified and illustrated in Fig. 1. Eor

<0 the fixed point atK =K?; , u=0) is shifted to positive

The corresponding flow equation fé¢ obtained in Ref.  values(see left inset of Fig. Jl whereas fore>0, K andu

11 deviates slightly from Eq23a), which can be traced back always flow to the strong pinning fixed poifat K=0 and
to the different RG procedures. In Ref. 11 the authors peru—co; right inse}, i.e., quantum fluctuations are too weak to
formed the RG at strictly zero temperature and used a synrenormalize the random potential to zero. The zero-
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TABLE II. Overview of the dimensionless correlation
Ay Y ge Yo lengths.
3 - Q \\/ Length Description Eq.
— - &s Weak pinning/high-temperature length  (68)
kS & Forward-scattering length (59
ésp Strong pinning length (67)
d=1 & High-temperature/disorder-free length  (57)
// & Disorder localization length (30)
Ew Lattice potential correlation length Sec. VI
Ky K
which yields a solution of Eq(23b):
FIG. 1. Schematic zero-temperature phase diagrad+ia and
close tod=1 dimensiongsee text u andK denote the strength of u2(|) p2 pe
the disorder and quantum fluctuations, respectively. In ¥ %(3_ 7KO) |+ T ﬂKoU(%'z- (32)

0
temperature transition disappears thereforedorl, since - ) ) .
the fixed point lies in the unphysicak0 region of thek-u  With u[In(§,)]~1, the correlation lengtl, is defined by
parameter space. This can easily be verified by using the

rescaling ofK given in Eg.(Al12c¢) of Appendix A which 2 6

O=Inul+ ( 3— p—K0> In(&,)+ % 7K oug[In(£,)]1?

results in the flow equatiofA16). In general this discussion 270
applies to the localization transition as well as to the Mott a— —_—
transition (see discussion of the lattice potentidlote that = =P
the flow for d#1 is qualitatively different from that dis- (33)
cussed in Ref. 27, because the model for superfluids in this
paper[Eq. (7) therein is dual to our model. Since this map- which yields
ping can only be done in strictly one dimension, one has to
go back to the initial Hamiltonian for superflufdgo obtain JaZ—4bnu-a
the rescaling id=1+e. In(é,)= b
If one includes the effect o€Coulomb interactionin d
=1 dimension, phase fluctuations of the free phase field in- Inu2 6 (Inu2)?
crease only asT(=0) ~__ Mo P KoUZ——— = (34)
szo 8 o%o pZKO 3
([¢(x,0~¢(0,0]%)~K In*Fx]. (29 2 2

As a result, phase fluctuations are too weak to suppress thenare the first term of the right-hand sidens) gives the
disorder even for large values Kfand the system is always result (30).

in the pinned phase. '_I'he phase diagram is therefore similar ~5se to the transition ling, shows KT behavior. For
to that ind>1 dimensions. _ K=K,, &, diverges andC(x,7)~K(l =In|Z))In|2| where|z|
In the pinned phase the parametirandu flow into the — _ W2+ 2 (cf. Sec. ).
classical, strong disorder regio:i— 0, u—o.
Integration of the flow equations gives for small initial S
disorder andK <K?* an effective correlation length or local- C. Strong pinning limit: - Exact ground state
ization length For large values olu our flow equations break down.
Qualitatively the flow is towards large and smallK. We
, (30) can, however, find thasymptoticbehavior in this phase by
solving the initial model in thestrong pinning limit exactly
at whichu becomes of the order unity. This can be extractedTo find this solution we will assume strong pinning centers

gu%Ll(:lL—K/Kfj)’l

from Eq. (23b) neglecting the flow oK. and weak thermal fluctuatiorisee Table i
A better approximation o, which takes also the flow of
K into account can be obtained by replacimgin the flow Uimp—® and c/ljnp,>T. (35

equation forK (233 by the expression given in Eq6). We
still use the approximation th&t deviates not much from the  To treat this case we go back to the initial Hamiltonign
bare valueK, which is the case, as long 8§l <1. Then, the  (with W=0 and the kinetic term also vanishes because of

solution forK(l) is given by K—0). For strong disorder it is convenient to integrate out
4 the phase fieldp(x) at all points which are not affected by
K(I)~KO(1—%u§7]I), (31) ]Egtremgmpurltles. Then the effective Hamiltonian takes the
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N

_ c(@ii1—¢)? _ u
Heff_izl §m+UiP(Xi) v ei=e(X).
(36)
Under condition(35), ¢; only takes values obeying ///
Ke K

p(@;+Qx)=2mn;+a with n;eZ integer (37

which minimizes the backward-scattering term. Defining

ande; by
pQIimp
Ni1—ni=h;+ o I Xir1=Xi=limpt+ € (38 t
with 0<x;<x,<---<xy,;;<L, the effective Hamiltonian FIG. 2. Typical flow diagram fow_=0 in the three-dimensional
can be rewritten as parameter space ¢, u, andt, proportional to the strength of quan-
tum, disorder, and thermal fluctuations, respectively.
PQe; 2
c (277)2( hi— =~ 7) In the special caskK—0 the flow equatior{19¢) reduces
Hoti=—s >, (39 to du¥/dl=[3—p?t]u? with solution
2p2 i Iimp+ €j
Here[x] denotes the closest integentéGaussian brackejls u?(l)= u§e3'*pzt0(e'*1). (44)
1 1 ; If we write t=t,e' we may expreskby t and hence we may
[x]=m for xe|m=zs.m+ 5}, meZ (40 e 2 ast-dependent function:
and 2 2 34— pA(t—t
U%(t)=ug(t/to) %P (1), (45)
- pQIimp pQIimp ) A . 3 )
== | 2. | (41)  which is plotted in Fig. 2 in thé-u plane.

One sees that the flow of the disorder has a maximum at

such thaf y|<3%. t=3/p? or | =In[3/(p?t,)], if to<<3/p?. For finiteK, the RG
Because thermal fluctuations are small compared to th#iow of u in the regionK <K, first increases and then de-

elastic energy, see E(35), (hj—pQe;/2m— y) takes on its  creases. The region of increase in #¢ plane is implicitly

minimal value, which is given by defined byM,={(K,t)|K} =K cothK/2t=0}, i.e., the posi-

tions of the maxima ofi’[K,t] are located on the boundary
PQei (47  of M, defined byK’ =K cothk/2t.
2m ' The correlation lengtl¥ can be found approximately by

which defines the exact ground state of the classical mode}?tedrating the flow equations until the maximumugf) and

If we use Eq.(38) one finds for the optimal value of thg’s t(l)/[“' K(1)] is of Fhe order ](see_ discussion in Sec. W
This can be done in full generality only numericallgee
pQ

Fig. 3.
ﬁ(fi +limp) It is however possible to discuss several special cases ana-
lytically. The zero-temperature correlation length can still be
which leads, using Eq(37), to the exact classical ground observed as long as this is smaller than the thermal de Bro-

ho=

0 _.0
Ny =N+

state glie wavelengthA+ which can be rewritten foK not too
_ -1
close toK , ast=<t,~Kt" ) " with t,~L-!, where we
1 DQ u FL
‘p?:_(zﬁ{ n2+2 [_(Ej+|imp) ]+7-r -Qx, definedty via ¢,=K/tg, analogously to the definition of
p =i 2m N7, and used Eq(30). We call this domain thequantum

(43 disordered region
Whereng has an arbitrary integer value. ' ForK=K, the correlation lengtlg is given by)xT which
is larger than given by purely thermal fluctuations. For scales
smaller than\ ¢, the phase correlation function still increases
as ~In|z with a continuously varying coefficier(uo),

At finite temperatureshermal fluctuations wipe out the as will be discussed in detail in the following section. In this
random potential which lead to the pinning of the CDW atsense one observegsiantum critical behaviom that region,
t=0 andK <K, . Thus there is no phase transition anymore,despite the fact that the correlation length is now finite for all
in agreement with the Landau theorem. The system is alwaysalues ofK.?
in its delocalized phase even if the disorder may still play a In the classical disordered regiong<t<t, the correla-
significant role on intermediate length scales. tion length is roughly given bl as follows from previous

D. Finite temperature and crossover diagram
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*A . thermal p=2 The (full) density-density correlation function is defined
T X X T as
-
0.08 e
classical . quantum S(x,7)=(p(x,7)p(0,0)), (48)
0.06 I I disordered M critical o ) ) _
0.04 L9 wherep(x,7) is given in Eq.(1). In the following we restrict
quantum 'x\ our considerations to thigharge) density wave ordgrart of
0.02 disordered . S, which is the term proportional tp?, i.e.,
oy

02 04 08 08 T 12 MK “ S1(x,7) = p(cosp[ ¢(x, 7)+Qx]cospe(0,0), (49)
_FIG. 3. The low-temperature crossover diagram of a oneyyhich defines the type of order of the density wave: If it
dimensional CDWt andK are proportional to the temperature and ecays algebraically we have quasi-long-range order

the strength of quantum fluctuations, respectively. The amount O?QLRO) an exponential decay over a correlation length

d.'sorder CorreSponde toa reduceq temperaiy#ed. . In the qas' corresponds to short-range ord8RO. The omitted parts of
sical and quantum disordered region, respectively, essentially the 28
) decay faster thaf,.

=0 behavior is seen. The straight dashed line separating them co S b .
responds ta\r~1, i.e., K~t, where\ is the de Broglie wave- 1 Can be rewritten as
length. In the quantum critical region the correlation length is given 2
. . . . — * p
by A1 . Pinning(localization) occurs only fort=0K<K§ . S,(x,7)= zl(elpr<e|p[¢(x,T)—<p(0,0)]>

studied® or by solvingu?[In(£)]=1 using Eq.(44) for small

t yielding é~ug?e Po~u;28= L. (7p*)2. Note that

ty=K for small K. and using a Gaussian approximation for the averages, which
In the remaining regiort=t,, the thermal region we  can be indeeéxactin lowest-order perturbation theofywe

apply the mapping onto the Burgers equatieae Sec. IV. obtain

In this case the RG procedure applied to this equation be-

+e'POX(g IPletx )= ¢(00)y) (50)

comes trivial since there is only a contribution from a single Si(x,7)=p2cog pQx)e” (P7A[ex:un =00 (57

momentum shell and one finds for the correlation length

E = (m2)F(T)t{1+ 1/ t,/(wp?t) ]PIA. From now on we focus on thghase correlation function
The phase diagram depicted in Fig. 3 is the result of the

numerical integration of our flow equations and shows in- C(x,7)={[e(X,7)— ¢(0,0]?), (52

deed the various crossovers discussed before.
In the high-temperaturgegion ¢>K) the flow equations
can be solved explicitly. Fan?(1) we get the same result as

and discuss it in various limits. Combining Eq&1) and
(52) we can extract a correlation length from the relation

given in Eq.(44) and the flow equation foK reduces to p2
~1=1lim == C(x,0). 53
K pt K £71= lim 52 C(x.0) (53
—_— = U, (46)
dl 27 (21)3

where we use®,(p?K,K/2t—0)=(K/2t)*. The solution of A. Disorder-free case

this equation is given by We start with the most simple case=0. Then, the cor-
relation function in dimensionless units follows directly from

5 3puf 2 o o - the actionS, written in momentum space:
K(h=|Kq~+ 5 €7 OEi(p°to,ptee’) , (47
16t0 2t 1— eI(k)(Jr ®nT)
with the incomplete exponential integral function &) Colxm=7T-2 — 5 5 (54)
defined by kn  optk

b with Matsubara frequencie®,=2zn/\ and momentak
Ei(a,b)EJ dte Yt. =kn,=2mm/L.
a The sums oven andk (i.e., m) can be performed ap-
One observes that(l) saturates very quickly to the value proximately for sufficiently largex and 7 and one obtairt8

K () <Ko.
()<Ko A7) 2 27X 27T
E Ccos }\—T Cco 7\_1' .
(55
In this section we discuss the density-density and the

phase correlation functions in more detail and summarize all The behavior of this function is considered in the follow-
correlation lengths in the various regimes—partly alreadying cases.
used in the last two sections. () At zero temperaturé\t— ) Eq. (55) reduces to

1+

K
Co(X,7)=—=1In
IV. CORRELATION FUNCTIONS 2
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drop the subscriphb in the following. Again we examine the
' (56)  T=0 and finite temperature cases.
(i) At zero temperature we have to distinguish between
i.e., the correlation function has a logarithmic dependency omhreeK regimes: FolK>K, the disorder becomes irrelevant
xandr and leads to an algebraic decay3f i.e., the system under the RG flow and we can use the zero-temperature,

Co(X,7)= ;In(;[szr ?]+1

shows QLRO. disorder-free result for the correlation function with the pref-
(ii) At finite temperaturesve can distinguish between actorK replaced by an effective quanti#.¢«(I=Inz) on a
length scales smaller and larger then. length scale=\Xx?>+ 72, defined by the flow equation fdt.

In the first casex<\t and 7<<\t the cosh and cos term This effectiveK saturates on large scales at a vafug;(Uo),
can be expanded to second order in the arguments and ongich may be seen in Fig. 2. Therefore we have QLRO in
gets the same logarithmic function as in the zero-temperaturis K region.
case. In the opposite cage> A1, which is the usual case at For 0<K <K, we integrate the flow ofi until it reaches
high temperatures, the cosh term can be approximated by thevalue of order 1, starting at smalp, which defines the
exponential function and one finds a linear dependency. on localization lengthé, (see Sec. Il B, i.e., the correlation
function behaves likeC(x,7)~|x|/&,, i.e., we have an ad-

Co(x)=mtx=Txc, ditional (to C;) exponentially decaying contribution ).
e (i) At finite temperatures the paramet€rsaturates at an
effective valueK ¢¢(Ug) on large length scale. Therefore the
2 correlation function for small disorder is given by E&5)
=S —=¢r, (57  with K replaced byK(I=1In2).
peat In the regionM,, of the K-t plane(see Sec. Il D, u still

increases and we can find an effective correlation length by
comparing the length scales on whial(l) or t(lI)/[1
+K(I)] become of order 1. Then, the correlation length is
(15he smaller length of these two.

i.e., S; decays exponentiallf(SRO over a characteristic
length é~t~ 1. The same result is obtained for the linkit
—0 at a fixed, finite temperature.

Note that with this result we have neglected the algebrai
decay for smalk<<\;. Therefore a better interpolation for-

mula for the correlation length i&~ (2/p?)(&1+\1), which C. Strong disorder
takes the slow decay for smalinto account. In terms of the In the last regiork =0 we come back to thstrong pin-
length-scale-dependet(tl) this rewrites to ning case discussed in Sec. Il C before and calculate the

pair-correlation functiorexactly Taking into account that the
t=In(¢)=K+1, (58 h;’s are independent on different lattice sites, |?h]
i.e., the correlation length is reached,t{f)/(1+K) is of  *&jj, the(discrete¢ phase correlation function is given by
order 1.
The change from QLRO on small length scalesé to — 47’ PQe; z
SRO on large length scales becomes clear if one considers ((en+17 1) >_? hi = 2= Y/
the cylindric topology of the system in space time at finite
temperatures: As soon as one reaches length scales of the 472 pQe; PQe;
order of the perimeter of the cylinder, which\s, starting = —( o —{ ppe
from small scales, the system changes from two-dimensional P
to effectively one-dimensional behavior. where we used Eq42) for the second equality. For evalu-
ating the disorder average in this expression, one has to take
B. Finite disorder into account the order statistics of the impurity distanees

If uis finite the action of the system has a forward- and a}grt?heetg?srng%larrzar:lglé :mse probability density function
i

backward-scattering part. With the decompositi@®), the
phase correlation function divides into two parts: -1

ple)=~-gle"

2
n'l

2 +'}’

11

imp€i, =i =< <. 61
C(X,7)=Clx, 1)+ C4(X) (59 e Tlme=e (61
and has therefore always a contributiGp(x) ~|x|/& with ~ Then, the correlation function can be explicitly written as
& 1~ a(1=Inlx)), i.e., the density wave order has always an
exponentially decaying contribution and we can define

2
) n, (62

— A7’ (» X X
2 ((Pn+1=@1) >:?L dxe”| 5 —|5
Si(x, 7)=f (x)e~ PZplx7), (60) _
) where we introduced the parameter 7/pQl;,,, and sub-
with f,(x) = pcospQye P ™'é However, sinceCy(x)  stitutedx=1Le+ 1. This integral can be evaluated exactly,
is not 7 dependent, it will not influence the dynamical prop- which leads to the following exact expression for the pair-
erties of the system. Therefore all further remarks aboutorrelation function at zero temperature, written in a con-
phase correlations refer @,(x,7) and consequently we will tinuum version:
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ko

pQIimp.
(63)

2
C(x,r>=p—Z(1 )IQ X=" 25, a=

sinha

PHYSICAL REVIEW B 69, 115118 (2004

f
pse=—dx@+ po{1+cof2(o+ QN+, (69

dye is conjugate to the phageof the Bose field operatdf.

A more detailed derivation of this result is given in Appendix Keeping our definitions oK, t and u, v denotes now the

B.

Finally we want to give an interpolating expressmn for the elastic constant is= «/(mpg)?,

C(x,7) from T=0 to high temperature‘E>c/(I,mpp ) start-
ing with the result(63). In the latter case we may neglect the
discreteness dfi;, and hence

<((Pn+1_ (Pl)2>

472 [
pzlimp

dhexr{ E \i h2)

Jix

(64)

with \; =272/ Tp?(limp+ €).
A plausible interpolation formula is then given by

([e(x)=@(0)]%) =~ 2Q2|imp<1_#:(la))+g X,
(65
and forl;,>Q 71, ie., a<1,
S 2 77t LT
([e(x)— (P(O)]z> (3 2 |m1p 18Q)4Q_2p c |X|
(66)

and hence the correlation length acquires the form

+ért. (67)

sinr(a))

Note thatl;,,Q=1, i.e.,as<w/p and&r>1in,. An approxi-

g;pl% p2Q2| imp( 1-

mate crossover to the weak pinning limit follows by choos-

ing limp~LFL.

D. Burgers equation

For K=0, high temperatures but weak disorder we adopt

an alternative method by mapping thelassical one-
dimensional problem onto the Burgers equation with ndtse.

phase velocity of the sound waves witk= \ «/(pom) and
where « is the com-
pressibility per unit lengtlisee also Table)l

With the replacements

K—K™1 t-t/K2, p=2,

Eq. (18) describes the action of the 1D superfluid in a ran-
dom potential. The correlation functions for the superfluid
can be obtained correspondingly from these replacements. To
avoid confusion we write down the full action in this case
explicitly:

K L K/t
__ 2 2
EB Jodxfo dr|[<ax<pa> +(970a)2100p

K (Kt
_EJ d7'{u?cos 4 ¢ (X, 7) = @g(X,7')]
0

+0—‘9X§Da(xi7-)ax()oﬁ(x!7-,)}] . (70)

Hence the RG equations follow from Eq499—(19d) with
the above given replacements:

2

dt 1 1o Bo| 4K, =
+K— 0 COt"?

di -

8u?
K

dK
5

Bo| 4/K « «
0 N COch_t'

2_3 2 K],
W— ECOch_tu

With this approach one can derive an effective correlation ¢ the transition between the superfluid and the localized

length given by

Egi~ert : (68)

+1 &\’
2020,

whereér<Lg , which changes the prefactor of the free cor-

relation function at high temperaturé€sy?). The full calcula-
tion of this result can be found in Appendix C.

V. SUPERFLUIDS

phase occurs & =2/3.* Thermal fluctuations again sup-
press the disorder and destroy the superfluid localization
transition in 1D.

VI. LATTICE POTENTIAL

If the wavelengthn of the CDW modulation is commen-
surate with the period (= 7, due to dimensionless unjtef
the underlying lattice such thaix = ga with integersn and
g, the Umklapp term—2m(w/K)cos@e) appears in the

Next we consider the application of the results obtainecHamiltonian! Therefore we switch on the lattice potential

so far to aone-dimensional Bose fluitts density operator is
given by Eq.(2) if we identify Qf/m=pg=p4 (p=2):

w#0 now. In this section we consider the case0 which
leads to the Sine-Gordon-type model:

115118-10
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K
) , (75

_K_\’;v

4w . dw 4

/ dK q*myw
/ where we used Eq$739 and(73b) and the initial condition
/’ wW(K¥=8/g2)=wy=0; 7=—B,(q?K? =) (=0.4, for q
=1).
/ \V In this region the periodic potential stabilizes true long-
| range order of the CDW: the phase is everywhere close to
Kw K one of theq classical ground states,,. Thedepinning tran-
sition from the latticefor K—K,,—0 is again of KT type.
The correlation length in the low- ordered phasé,, is de-
fined byw(In &,)~1 and diverges aK,,—0.'* This can be
seen by considerations analogous to the disordered case.
FIG. 4. Typical flow diagram for the disorder-free model in the Defining

three-dimensional parameter spacekofw, andt. w denotes the
strength of the commensurate lattice potential.

v

1

K T~
v= 2K_*_2' X2=§q677W2

w

SLP B L K/t 1 ) ) wW
h fo dXJo 72k (0x@) " (0:0)7 = rcoddg). (note thaty>0) leads for|y|<1, i.e., close tK¥ , to the
(7D KT equations(28h) and(28a.
At finite temperatures we find a similar scenario as in the
The model hag| degenerate classical ground states givercase where we considered the influence of the disosder:
by ¢m=2mm/q with m=0, ... g—1. Performing a calcu- first increases in &-t region given by M, ={(K,t)|K%
lation analogous to the one aboffeut with u=0) the RG- =K cottK/2t=0}, i.e., when the rhs of Eq72¢) is positive,

flow equations read but then decreases and flows into the region of ldrgad
small w. Thus the periodic potential becomes irrelevant at
d_K:Z 4,2 2 5 K finite temperatures. This can be understood as follows: at
q'W?B,| @K, o|cothy, (723 i .
dl 2 2t t finite t the 1D quantum sine-Gordon model can be mapped

on the Coulomb gas model on a torus of perimatgisince
periodic boundary conditions apply now in thedirection.
Whereas the entropy of two opposite charges increases for
separationL>\t as In(\y), their action increases linearly

dt

di t, (72b)

14 7 gowBy| a2k, 2 | coth
54 1| a°K, 5 h2_t

dw q® K with L. Thus, the charges remain bound. The one-
arc Z_ZK COch_t w, (729 dimezgonal Coulomb gas has indeed only an insulating
phase’

whereB, , are given in Eq(20) with
012 250008, Gy (x2+ 72)COX. VII. CONCLUSION
To conclude we have shown that in one-dimensional

charge and spin density waves, Luttinger liquids and su-
prafluids, quantum phase transitions between a disordered
(or locked-in phase and an asymptotically free phase at zero
temperature are destroyed by thermal fluctuations leaving be-
hind a rich crossover behavior. This was demonstrated by

Plots of the function®, andB, can be found in Fig. 6 at the
end of Appendix A. A numerical solution of the flow equa-
tions (729 —(72¢ is shown in Fig. 4.

At zero temperature Eq$723 and(72¢) reduce to

?j_:(: gq“szz(qu,oo), (739 lrJesing a full finite temperature RG calculation. The crossove_r_
gions were characterized by the behavior of the phase pair
correlation functions. For vanishing quantum fluctuations our
d_W_[z_ Q_ZK W (73b) calculation was amended by an exact solution in the case of
dl 4 ' strong disorder and by a mapping onto the Burgers equation

] ) ) with noise in the case of weak disorder, respectively. Both
and we find that fou=0 the lattice potential becomes rel- methods gave an exponential decay of density correlations.
evant(i.e., w grows for K<K,,, whereK,, is implicitly We have also briefly discussed that the Coulomb interac-
defined by tion may destroy the unpinningocalization transition.

o ) The finite temperature calculation used in the present pa-
2 Kw Kw per is also suited for treating the low-frequency low-
wo(K K_* -1 (74) temperature behavior of dynamical properties which may de-
" pend crucially on the ratioo/T. This as well as the
which follows from discussion of the influence of quantum phase lipsll be

" 2mq%y
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postponed to a forthcoming publication. free thermal average over the fast modes can be evaluated
The combined effect of disorder and the lattice potentialwith the free propagatorkf+ »2) ~* and using the formula

on the zero-temperature phase diagram is still controversially

discussetf**and cannot be explained by the RG results pre- “. cognx) m cosh(m—x)a]

sented in this paper, since both perturbations become rel- <~ "5 "7 "3 " sin(#la]) SX<2m

evant for smallK. However, this problem is beyond the

scope of the present work and may be discussed in a fututte treat thesumover the Matsubara frequencies yielding

publication.

, K cost(K/Zt—|Ar|)5 nb
<(pa'>(X,T)(p/3,>(X,7' )>0,>_E Sinh(K/2t) ,gN D0,

(Ad)
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APPENDIX A: RENORMALIZATION OF THE DISORDER whereH, is the Gaussian part. We approximaig by
We present a short overview of the used finite temperature 7 :f ddrK(r) 2(r) (AB)
anisotropic renormalization-group method in the case of the ! 2 ¢\
replicated disorder term. Starting point is the acti@g). o ~ ] ) )
The phase field o(x,7)=(t/  and define=Ho+H,. To find the optimal function«(r),
KLA)EwnE\k\slel(wnTJrkx)(Pk,wn with the Matsubara frequen- the variational free energy F,,, with

cies w,=27nt/K and k=27m/(LA) (note that re- - _F TN~
scaled coordinates are ugésisplit in a slow (k|]<b~1) and FsesFoar=F+(Hse— M) (A7)
a fast mode partt{"'<|k|<1), whereb=e %' is a rescal- is minimized with respect ta:

ing parameter of order 1. Notice that tie. still have all

Matsubara Fourier components. 6F ,ar ~ |3
In order to find the RG corrections of the other parameters 0= St =B(Hse=H)#\ —5—| _
n H
in the model, we followWilsor?® and expand((e~54 /% ~
—1))o~ in small u/K)?, with ~ @2(r)
i Bl (Ms= )5~
s U2 H
;: =— 5 > f f drd7’ B 5
4 25 =5 0% ot - cog DAL 02T
X f dx F{()Da(XiT)_qDB(XlT,)]I (Al) (A8)

For the last equality we took into account that the averages
whereR[ f]=cospf). ({---))o~ denotes the cumulative or are Gaussian such that we could apply W&k theorem
connected average over the fast modes in the “momenturfrom Eq.(A8) we finally get
stripes” with the free Gaussian model. The correction in first

order is given b 1
guen oy K<r>=ﬂ<cowr>1>ﬂ=uexp(—§<<p2<r>>a . (A9)
SO _[[sw
T:<< 7 >> . (A2) For small disorder Eq(A9) yields for RfA¢_] the ap-
0> proximate expression
For calculating the cumulative average of the functidraR 2
is expanded in smalhp-=¢, - (X,7) —¢g~(X,7'), €., R[Ag.]=— %(A(P<)zef(p2/2)<(A<p<)2>o,<_ (A10)
(RIA@D)o-=—PHR[A¢- )¢5 - Yo~ —R[Ae.] The same result can be obtained in terms of an operator

, 4 product expansioti of R[f]. In order to get a RG correction
X(Pa=>(X7)@p>(X, 7))o} +O(Ag). to K a gradient expansion of\(p_)? in Eq. (A10) in small
(A3) A7 is performed, which is justified by the exponential decay
of the correlation functior(A4) on the integration interval
The first term in Eq(A3) gives a correction to the disor- such that higher orders iA7 do not contribute to the RG
der parameteu and the second term a correctionkoThe  correction: A ¢_)2~[d0-(x,7)A7]? with 7=(7+71')/2.
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The pair-correlation function in the argument of the expo- B4(q2K,K/2t), g=1
nential function in Eq.(A10) can be approximated by the 2 4 6 8 10 12 14
expression already shown in E@5), i.e.,
0.0 KI X 2 2mtx
(Le(x, )= @(0,0]%0= 7 I 1+| 5— | | cosh —
2t
—Co K . (A11)

After integration of the fast modes qf, one rescales the
system to maintain the fluctuation strength and the spatial —

density of the degrees of freedor=In b): 10 12 14
05
x—X'=xb™1,
1.0
r—7' =17 T-=T =Tb%
15
p—¢'=¢b7¢,
which leads to rescaled parameters. For our model these are 20
given by (here ind dimensiong FIG. 6. FunctionsB;(q?K,K/2t) and B,(q?K,K/2t) plotted
di7-242 with respect toK for different temperatures, written next to the
c'=chd*tz 2+ (Al2a)  graphs, andj=1.
'=pb* 1, Al12b
v v ( ) ulz_uz_(s pZK . K ) AL
K'=Kbl~d-2, (A120) ar 7 cothpyju”. (A14)
1 _thn2-d—2¢
v=tb ' (AL2d) The RG correction t follows from the second term of
U =ub? 92 (A120 Eqg. (A3) with Egs.(A4) and (A10):
o' =ab? 9 (A12f) K
4 K (K cosh o> — 7
w' =wb?, A12 —k| 1o P2 f o 12t ]
(A129) K'=K| 1 2ucothz—to drr <
Due to the invariance of the system under a phase shift of Ccoshy
2nar, { is zero for symmetry reasons.
The RG contribution to the flow equation faf follows
from the first term of Eqs(A3) and (A4) with A 7=0: ) )
x g~ (P72)[¢(0.1) = ¢(0.0))olnb | (A15)
2=u?1 P°K tKIb A13
u'“=u TCO h2—t nbj. (A13)

Together with Eq(A12¢) (d=1) one gets and the flow equation(for d=1+¢) follows from Eq.

Al20),

200 ; Bo(p2 KK/21), p=1 (A129

175 f\ & 1=0 K'-K p* “ Bl p2. S|k (at6
S0\ 1=0.05 i | 7€ g ucothy Bl K] (K (ALD)
1.25

1.00 V' t=0.25 with By given in Eq.(20), for which we used Eq(Al1l).

0.75 i t=0.5 The functionB, which appears in this flow equation is
050 & =10 plotted in Fig. 5.

’ For completeness we also plot the functidds and B,
025 in the relevantk region for the lattice unpinning transition

K [see Egs(72a and (72b)]. Note that for evaluating these
functions at zero temperature, one has to execute the
FIG. 5. FunctionB,(p?K,K/2t) plotted with respect t& for  integrals at finite temperature first and then take the limit
different temperatures. t—0 (see Fig. 6.

2 4 6 8 10 12 14
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APPENDIX B: STRONG PINNING

To calculate the phase correlation function in the strong
pinning limit, it is necessary to study the order statistics of

the impurity distancese;=(Xj—X;_1) —limp. Following
David*® we obtain for the probability density functigpdf)

of the ¢’s in the case of unlformly distributed impurity po-

sitions O<x;<L: p(&;)=1lim[1— (1) (€+limp) 1N with

_limpgeigl-_limp'

can be rewritten as
-1

(.

pe)~"oPe lml,  ~lipp<e<e.  (BY)

With this, one can calculate theth momente_in (for n
>1, =0) as follows:

— (= limn [t an
in=f P e- 'ImpE'e dei= p( 1)n
I|mp

(B2)

Using 9" ox"y_ e~ Hx=(—1)"nI[SP_,(— 1)kl +1]
yields €'=(n!/c")Zy
€i€j= ||mp5|1

version{(¢n,— ¢1)2) in the limit T—0. With the definitions
given below Eq(36), we can rewrite

4772 n-1 er 2
2_ . 'l
(on=p0*=—5 2 (hi-—- 7) . (B3
Using €;=h;=0 andh;h;x g;; leads to
- 47’ pQe; )2
— = =
<(§Dn+l ng)) p2 <(hl 277_ 7 n.

~ s

=

(B4)

Because only the valye Qe;/27+ y] for h; is taken into
account for evaluation of the thermal average, we get

2

PQEe;
2

t+y

~ (PQEi 4y

C= 2

PQEe;
2 ty

* I|mp ol PQe;
_fhmpd .Te Imp 2’7T +7_

) 2
If we substitutex= ||_mp€|+1 and take into account thak
+n]=[x]+n for neZ, we get

& [Caxe| pu-

2
) (B5)

2a

with the parameter=7/pQl;m,. Now the quadratic term

In the thermodynamic limit the pdf

_,((—1)¥k!) and for the correlator
With these results we can derive the pair-
correlation function63). Therefore we calculate the discrete

PHYSICAL REVIEW B 69, 115118 (2004

——J’ dx e x2—

———f dx e * x

1 (2k+1)e
=—= 2 J dx e "x
(

@ k=1 J(2k-1)a
I3—f dxe

with C=1,+1,+15. For (k—1)as<x<(2k+1)a, keZ,
[x/2a]=k, such that theGaussian bracketm the finite in-
tegrals inl, andl; can be replaced bl or k?, respectively:

1> (2k+1)a
l,=—= >, kf dx e X,
ai=1 Jek-1)a

~ (2k+1)a
3= >, k2 f d
k=1 (2k—1)a

The values of these two simple integrals are

(B6)

X
2a
X

2 * r(2k+1)a
=> f dx e X =—
(2k-1)a 2a

X 2

2a

3

xe X (B7)

(2k+1)a
J dx e *x=2e 2K (1+ 2ka)sinh &)
(2k—1)a

—acosha)],

(2k+1)a
f dx e *=2e”%*sinh( ).
(2k—1)a

The remaining sums ih, and |5 are only derivatives of
the geometric series which can be easily evaluated.
The result is

31
a’+ a*+0(ab),

" 30240
(B8)

~ 1/1 1 1 7
12~ 7207

" 2ala sinha)] 12 720

where the expansion is useful onlydfis small, i.e.,Ql;,

1. If we would have neglected the order statistics of the
impurity distances we would get only the leading constant:
C=1/12.

Euation(B8) yields the presented expression for the pair-
correlation function(63).

APPENDIX C: CORRELATION LENGTH IN THE
CLASSICAL REGION AT FINITE TEMPERATURE

In the weak pinning limit, ¥l;;,,Q<c/(Uinypq) OF

in the integral is expanded, which leads to the followingLg >liy,, the classical Hamiltonian can be rewritten to a

three(converging integrals:

random-field XY model
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L c _ +u(k-k’,o.)—0)')
Hclass(L):J dX[E[ﬁX(p(X)—U]Z (a)
0 u(k,0) u(k,0) glk-K'\,0-0')
U. X= +X *
+ l”“pp Leogple(x)—a() T}, (CY alko) o) aio) N\ gtier)
imp +U(k',0-")
where «(x) is a random phase with zero average and Bl

T (b) Ko Ko’
elPlaC et =], s(x—x'). (C2) S N N 7(:\ «
In the following we consider only the backward-scattering ko ke kg k_k{ o /:)
term of the correlation functiof, and therefore neglect the ' ’ '
forward-scattering terno=Ujpof/(Crl ). FIG. 7. Diagrams fo(a) Eq. (C9) and(b) Eq. (C11).
The goal is now to find an effective temperature, which
replacesT in the correlation function for the free cag®). UimpP1
We start with aBurgers-likeequation, which one gets after a €= > (C7)
Cole-Hopf transformatiorirom the transfer-matrix equation, limpA“C
for the restricted free energyF(x,¢)=—T In Z(X,¢) with 1
the partition function u(k,w)=(eAc) "U(k, o), (C8)
_ and settingF(k, w) =ceg(k, w)u(k, ) we obtain the follow-
P(x)=¢ . . . , .
Z()(,(p)zf Do e HOIT, ing, self-consistent equation for the Green’s function
¢(0) g(k,»):
The equation reads g(k, 0)u(k, )
oF T #F 1 (df)z 6
dx  2c (9@2_26‘ X3 zgo(k,w)u(k,w)+§go(k,w)
1 Yinpbr 3 dk’ doo’
7. cos{p[go(x)—a(x)]}. Xf w’(w—w')g(k—k’,w—a)’)
imp A(27T)2
Ulx,p)
Xg(k, 0" u(k—k",o—o")u(k’,0"). (C9
Using the Fourier transform
For e<1, i.e., for weak disorder, this equation is iterated to
dk de first nonvanishing order i (one-loopapproximation and
f(X,cp)ZJ > el k) 7k, w) averaged over disorder. The disorder average
(2m) u(k,w)u(k’,w") can be calculated using EqE€5) and(C2),
[analogous folJ (x,¢)], Eq. (C3) is rewritten as which gives

Tw? u(k,w)u(k’,w")
—1kFk,w)=— %}'(k,w)Jr Uk, o)

= A27?{h (Kh_(K) 8(w—p)5(w' +p)
1 dk'de’

*56) "m0 +h_(k)h. (k') 8(w+p) 8w’ —p)}
=202y m 2 Sk k') 8w+ 0" ){ 8w+ p)+ S w—p)}
| XAk oz R e, (G =25(k+k') 8(w+ 0" )D(w,K). (C10
with Therefore, we get fog in order €2
Utk = T2 ()80 p) +h_(K) 3w+ P)), dK’ do’
mp (k.= go(k,0) + (ko) [ Gt a)
hAk)Efdxé[“"“‘X”- (C5) X' o(—")go(K 0" )go(k—K ,0—w’)
Xgo(—k',—@")D(K",0"). (C1y

Introducting the dimensionless quantities
The diagrams visualizing Eq$C9 and (C11) are de-
(Ce)  picted in Fig. 7.

Kw)= ——s———,
Go(k,) mtw?2—1kIA For k=0 Eq.(C11) reduces to
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TABLE Ill. List of used quantities.

PHYSICAL REVIEW B 69, 115118 (2004

Symbol Quantity Eq. Ref.
a Lattice constant
b=e™! Rescaling parameter of order 1
B; Functions used in flow equations (20
c Elastic constant (4a)
C(x,7), Ct, Cyp Phase correlation functions (52), (59
d Spatial dimension
f(T) Condensate density (4)
F Free energy (15
g Dimensionless electron-phonon coupling constant (4)
gi Functions used irB; (20
Jq Electron-phonon coupling constants (2
h; Integers(cf. strong pinning (39
H, 7“{0 Hamiltonian(complete and free (4)
k, Ky Wave vectors
ke Fermi wave vector
K, K(I), Kg Dimensionless parameter for quantum fluctuations (8b), (19b
Ky, K& K values defining the separatrix/fixed point of the disorder (27)
unpinning transition
Ky, K§ K values defining the separatrix/fixed point of the lattice (74
unpinning transition
L System length (4)
Lep Fukuyama-Lee length (7)
limp Mean impurity distance (5)
Lo Free(Gaussianpart of the Lagrangian (16)
n; Integers(cf. strong pinning (37
Nimp Number of impurities (4b)
p Commensurability used in the density (2)
p(e) Probability density function o; (61
p Momentum operator, conjugate o (4)
Q Density wave vector (2)
q Commensurability used in the lattice potential (4c)
S, S Action (full and Gaussian part (18
sm Replicated action (16)
Sse,SLp Action for superfluids and lattice potential, respectively (70
SECH Density correlation functions (48), (49
T Temperature
T™F Mean-field condensation temperature
t, (1), to Parameter for thermal fluctuations (89
ty,=1/(ALg) Crossover temperature from classical disordered to
thermal regime
tk Temperature separating the thermal and disordered regime
U(x) Disorder potential (4b)
U; Impurity potential (4b)
Uimp Mean impurity potential (5)
u, u(l), ug Dimensionless parameter for disorder fluctuations (8¢
VE Fermi velocity
v phason velocity (4)
V¢(x) Coulomb potential (10
W Lattice potential strength (40
w, w(l), wg Dimensionless parameter for lattice potential strength (8d)
X Impurity positions (4b)
z Dimensionless distance inx space
a Parameter used in the strong pinning limit (63
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TABLE Ill. (Continued)

PHYSICAL REVIEW B569, 115118 (2004

Symbol Quantity Eqg. Ref.
B Inverse temperature
y Parameter for KT flow equations (283
A Order parameter (2)
€; Deviation from mean impurity distance (39
{ Transverse width of the quasi-one-dimensional system
nn =Bo(p?K} ), =—B,(q¥K}, ), respectively
\ Density wave length
At de Broglie wavelength 9
A Momentum cutoff
& &y, &y, etc. Correlation lengths Table Il
p(X), pse(X) Charge/spin or superfluid density (1), (69
Po Mean density 1)
P1 Density amplitude for harmonic part f(x) (1)
o Forward-scattering amplitude (19
T Imaginary time coordinate
@ Phase variable 2)
X Parameter for KT flow equations (28h
Y Auxiliary function (21
®y, Matsubara frequencies

p2|imp or for the effective temperaturg,;
9(0,0)=go(0,0)| 1+ € J '
8t / 2 21192
mtw (K'TA)*+ (mpt/2) 1 1 L Al | 1 . 1 t, 3
P—w Ters T 27%p2s) T 2\ 7p2t
Tt (0—p)22— 1K' IA (C14
which yields for the correlation length
pt+w
_ . (C12 3
mt(w+p)22—1k' /A T 1) t,
§’1%§f(T)t 1+3 | |A (C15
Because we calculate the correlation length in the thermal mpt

regime (see Fig. 3 with t=t, the k’ integral in Eq.(C12)
gives the biggest contribution tpat smallw. In this case the
k’ integral can be easily calculated which leads to

as written in the text. For high temperatutest,, we recover
the lineart dependency of the free case.

A related calculation for directed polymers and interface
Al growth can be found in Ref. 40. Note that in this pager
g(O,w<1)%go(O,w)< 1— 62&) (c13  plays the role ofy andt the role ofx in the above calcula-
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