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Tunneling density of states of granular metals
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We investigate the effect of Coulomb interactions on the tunneling density of s@a@S) of granular
metallic systems at the onset of Coulomb blockade regime in two and three dime(ssidhs3). Using the
renormalization group technique we derive the analytical expressions for the DOS as a function of temperature
T and energys. We show that samples with the bare intergranular tunneling conducg#nkerss than the
critical value g$=(1/2wd)In(Ec/8), where Ec and & are the charging energy and the mean energy level
spacing in a single grain, respectively, are insulators witlar@ gapin the DOS at temperaturds— 0. In 3d
systems the critical conductang% separates insulating and metallic phases at zero temperature, whereas in the
granular filmsg$ separates insulating states with the haih? < g%) and soft(atg? > g%) gaps. The gap in the
DOS begins to develop at temperatuiigs~ Ecg$ exp(—27rdg$) and reaches the value~T* at T—0.
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Granular materials, a focus of the current mesoscopic T* ~ ECgoe—Zde$- )
physics, is a unique testing area for general concepts of dis- i '
ordered system@ee Refs. 1-4 One of the remarkable fun-
damental features of granular metals is the strong on-sit
Coulomb repulsion that leads to the suppression of transpo
at low temperatures and to an insulating ground state at |0V-\L

; C_
bak\]re |gt_ezrg;]anglar co.nduitanig%f gT_(lll 2md)In(Ec/ 3)5 conductance renormalizatiqd) is saturated and the system
whered s t € dimensiona ity of the granular arrdy; an .__behaves essentially as a homogeneous disordered fnetal.
are_the char_gmg energy and the mean energy level spacing @omparing two relevant energy scal@ and gré, one

a single grain, respectively. Good progress in understandingy [, de& that if (i) T* <grd (or, equivalently,g?>g)

this insulating state has recently been méglet, despite the then, the renormalized conductance is still large at tempera-

impres;ive advance,' 'the satisfactory g)icuére of the MOtEuresT~gT5 and the low temperature phase of the system is
(metal-insulator transition that occurs &r=gr, and of the oy 1 that of the disordered metals. Alternatively(iif

physics of ':}S vicinity, is still Ia(_:klr;]g. One of the fun]?lahmentaley >gré (or gv<g%), the conductance of the system be-
queztlon:?‘t aft remamshopenl IS the suppression OMt € unNelymes significantly suppressedTat- T* reflecting thus the
ing density of states that always accompanies Mott transiy,cot of the Coulomb blockade regime. In the latter case one

tion. In this Report, we develop a quantitative approach tha&xpects that aT ~ T* the Coulomb gap begins to develop
enables us to investigate Mott transition in granular metaITSe
t

4 derive th ted t ling density of states in | reaching its maximal value at zero temperafumad, as a
\?irc]:init;nve € associated tunneling density ot Stales I lgygyit a noticeable suppression of DOS even at finite tem-

. . . eratures;T ~ T* occurs.
The density of stateOS) is a fundamental quantity that P

determi t of th " f th ¢ involved In this Report, we consider the tunneling DOS of granular
etermines most of the properties ot the System INVOVeCy, o5 with the bare tunneling conductanﬁav g$ at the

and the electronic transport is a key phenomenon where thc?nset of Coulomb blockade regime at temperatdresT*
manifestations of the essential DOS features may be moez%

pronounced. A general technique to treat transport properti ase(ii) abovg. We show that Coulomb blockade strongly
: . . ; resses the tunneling DOST). For 3 granular samples
of granular metals in the high temperature regime g6 PP ! g 7) granu P

was developed recently in Ref. 4. It was, in particular, shoan(T) is given by

the renormalized conductanag;(T), is strongly suppressed
nd approaches small values where renormalization group
reaks down. Equationil) is valid only at temperatures

> g6 (Ref. 5 whereas in the opposite case< g6, the

that the conductivity of granular metals can be described in 0 an
terms of the renormalized temperature dependent intergranu- () N 1 In 9rEc (3a)
lar tunneling conductance given by the following expression Vo 67-rg$ T ’
0 0 whereas for granular films we obtain
gr(T) = g7 = (1/2md)In[g7EC/T], (1)
wn [ |, 1 ]
which holds as long ag(T)>1. The conductivity of the w LT 4mg® T '

sample is related to the tunneling conductance ¢&%)
=2e’g1(T)a?, wherea is the granule size and the factor of Here v, is the DOS for noninteracting electrons ard
2 is due to the spin. From E¢L) follows that at temperature =0.253 is the dimensionless constant. Equati@adold for
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v(€) v(T) o) _ (é)l/w( eo_(w)>4g$, (6b)
Vo w 0o
wheree=2.7182. Equationg6) are useful for the compari-
son of our predictions with the experimental data.
Now we turn to the quantitative description of our model
—] e —] T and derivation of Eqs(3): We consider al-dimensional ar-
(@) A (b) A ray of metallic grains. The motion of electrons inside the

grains is diffusive and they can tunnel between grains. We
FIG. 1. Schematic behavior of the tunneling density of states aassume that in the absence of the Coulomb interaction, the
a function of(a) energye at zero temperature ard) temperaturds  sample would be a good metal.
ate=0. The system of weakly coupled metallic grains is described
by the Hamiltonian
temperature§ >maxT*, gr6) where the temperaturg* is N A A A
given by Eq.(2). We note that according to Eq®) the DOS H=Hp+Hc+H,. (7a)
vanishes exactly at the same temperaiitiras the renormal- ~ . . o
ized conductance;(T) in Eq. (1). The termH, in Eq. (78 dgscrlbes noninteracting isolated
We show that the resuli8) can be generalized to finite disordered grains. The terh describes the Coulomb repul-
frequency by substitutio™ —maxT,s}. In this case Eqs. sion and is given by
(3) can be applied even fofr — 0 providede is larger than
the characteristic energy that coincides with the tempera- |3|C:
ture T*

N | R,

> AC, (70
ij

. wherei stands for the granule numbél; is the capacitance
A ~ Ecgle?mor, (4)  matrix, andfy is the operator of electrons number in the

) __i-th granule. The last term on the right-hand sigks) of Eq.
From Egs.(3) one can see that the tunneling DOS IS (7a) is the tunneling Hamiltonian

strongly suppressed at energies A. Thus, one concludes

th_at forg$< g(T3 the system i_s an insulator at zero temperature |:|t = tijaiTpaj " (70)
with the Coulomb gapA given by Eq.(4). Although the e
tunneling DOS behavior(e) and»(T) in Fig. 1 in the region . . o
T, e<A cannot be directly derived from our formulgsnd ~ Wherea; (& \) are the creatiogannihilatior) operators for an
therefore there is no reasons to expect tb(ai) and V(T) eleCt.ron in the statk of thel'th grain andij |S the tUnneling
should be the same outside the applicability domairthis ~ Matrix glement corresponding to the points of contact of
region the behavior of the tunneling DOS can be obtained ofth andj-th granules.

a qualitative level with the help of physical arguments. One AS it was shown in Ref. 5, at temperaturés-gré the
notes that the scal& represents the Mott gap. Thus, at zeroMmodel given by Eq(7) can be effectively described in terms
temperature the tunneling DOSi¢) is strictly zero fore<A ~ Of the functional proposed by Ambegaokar, Eckern, and
as shown in Fig. (8). At the same time the temperature SCNON(AES) in Ref. 7

dependenpe of t_he t.unnelmg. DO&T) for T<A must have S=S.+S, (8a)

the following activation form:

ij,p.q

whereS; is the charging part of the action

uT) ~ we™T, T<A, (5) B deg Ci deb
_ | 1
Sc_zij: 0 deT 2¢? dr’ (80)

as shown in Fig. ().

Equation (1) generalizes straightforwardly to finite fre- and the second term on the right-hand side of @Bg) de-
guencies by the substitution— maxT , w}; this allows us to  scribes tunneling between the granules
relate the frequency dependent conductivityw) with the 8 5 , )
tunneling density of states at zero temperatufes): For 3 S =2mg:S) Tdrd7 s'nz[ & (1) = &y(7 )} _
granular samples we obtain the following scaling relation: i Jo sirf[aT(r=7')] 2

(8c)

(6a) Here ¢j(7)=¢i(7)—¢;(7) is the difference between the
phases of the-th andj-th granules. In the metallic regime
we may neglect winding numbers in the phases. We use the

where 00:2e29$a2'd is the high temperature conductivity renormalization group technique to calculate DOS. The

with e being the electron charge. For granular films we geftcharging part of the actions. in Eq. (88 determines the
the following expression: upper frequency cutoff.

Yo 0o
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In terms of the functional approach based on the actiomanifest itself in the renormalization equation for conduc-

(8a), DOS is expressed &s tance(10) since the conductance renormalizations come only
‘ from distances of the order of the grain sf2dsing Eq.(14),
() —TIm B drelen (@ B-sOn ) performing the integration over the, g in Eq. (11) and
vy o SinaTr Op Tl taking into account the fact that the upper cutoff for fre-

quency, o is grEc(q), where for 2 granular samples the

where analytical continuation from bosonic Matsubara fre-charging energyEc(q) is given by the expressiok:(q)
guenciesw,=27Tnis assumed on the rhs of §§). Follow-  =7E_./qa, with the logarithmic accuracy we obtain the fol-
ing the standard renormalization group procedure we sepdewing equation:
rate the fieldg into slow, ¢ and fast,¢; parts and integrate
over the fast field in Eq(9). The fast fields belong to the
infinitesimal volumedsS in the configuration space of the dl 211 {QT_Ec}

. n(vlvy) = n dA
guasimomentumg and frequencyw that represents the en- 47° Agr(A) A
ergy shelldA. Using the one-loop approximation we obtain
the following RG equation for the conductange®

(15

Integrating Eq.(15) over the variableA in the interval

dgr(A) 1 (T,grEc) we obtain DOS as given by E¢3b) for 2d granu-
dA 2@Ad’ (10 lar samples. Equatio(8b) was derived for long range Cou-

lomb interaction. For short range Coulomb interactitims

Performing the integration in Eq10) we obtain Eq.(1). may happen due to the presence of external scregiiey
With the same accuracy for the flow equation of the densityupper cutoff forw-integration in Eq.(11) is g-independent

of states we get and is given byg{Ec. In this case the extra factor 1/2 will
do o appear in the right-hand side of E@L5) and as a conse-
| _.d| Yo 09 _ 11 quence the final result for the DOS [n !E(Qb) will be modi-
din(/v) =2 fds 2#(277)”G¢(w’q) (1) fied asv(w)/ vg— [v(w)/ vo]Y2. In the limit of large tunneling

conductanceg$> g$’ one reproduces the result of Ref. 4 for
Here the Green’s functio4(w,q) of the phase field$ is  the tunneling DOS of granular metals.

defined on the scales Although our theory applies todLgranular arrays, the
results in this case should be taken with caution when com-
Gy(w,q) = 1 (12) pared with experimental data: the problem is that the con-
LN 2g+(A) | w|Eq' ductivity of 1d system is usually controlled by the weakest

junction and thus must be described by the conductance dis-
In Eqg. (12) we introduced the notatioB,=23,[1-cogda)]  tribution functior? rather than by the average value of the
with {a} being the lattice vectors. For simplicity we assumeconductance. Thus even small fluctuations of conductance
the periodic arrangement of grains. The integration in Eqcould be important in d case, especially close to the pre-
(11) is going over the infinitesimal volumeSin the (w,q)  dicted transition ag®~ g%; we, however leave the detailed
configuration space that corresponds to the energy intervanalysis of this situation to the forthcoming publication.
dA. The proper way to chose a particular formdSdepends In conclusion, we have investigated the effect of Coulomb
on the dimensionality of the sample: Fod 3amples the blockade on the tunneling DOS of granular metals in the
integrals over the quasimomentum converge and one caimit of large tunneling conductance between the grains. We
simply choosedS=(27/a)3dA. This leads to the following have determined the critical value of tunneling conductance

differential equation: g$:(1/2wd)ln(EC/6) below which the granular metal be-
comes an insulator with a “hard” gap at zero temperature.
_A dA For 3d samples this value of critical conductance corre-
din(v/vg) = ———, (13 ) .
2w Agr(A) sponds to a metal-insulator transition, as granular samples

with g$>g$ are metallic at zero temperatui@his value of
where A=a® [ d’q/(2m)*1/E,~0.253 is the numerical con- g%=(1/2xd)In(Ec/8) explains the long known puzzling fact
stant. Integrating oveA in Eq. (13) in the range(T,g%Ec)  that in 3 systems the metal insulator transition occurs at
we obtain Eq(3a) for DOS of the &l granular metals. gr=~0.1.
The A case is different since the direct integration over The situation is different for @ granular systems since in
the quasimomentung in Eq. (1) would lead to the infra- this case even samples wig}>g$ are insulators at tem-
red divergence. In this case it is natural to introduce theperaturesT—0 due to interaction and quantum effets,

infinitesimal volume dSin the following way: similar to those that take place in homogeneously disordered
metals?>~!! Nevertheless even indxase the critical value of
C .
dwd?q= | ded?qs(w|E, - A)dA, 14 conduc.:tancegT represents the boundary between two phyS|—
st wdd f 0d“qol| o) a= M) (14 cally different regimes at temperatur@s-0: Samples with

g$<g$ represent the “hard” insulators, with a hard gap in the
such that on the energy shéll the propagato(12) will not DOS, while samples wit}g$> g$ are insulators with a soft
be divergent sincewE,=A. This complication does not gap in the DOS similar to homogeneously disordered metals.
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Our results have a logarithmic accuracy, i.e., the appeaperiments on transport and thermodynamic properties of
ing in the theory logarithm should be large. The fact that thegranular metals.

critical tunnelling conductancg$ can be even less than one )
for realistic values of raticE./d due to extra coefficient ~ The authors thank K. Efetov and Yu. Galperin for useful

1/27d does not invalidate our theory as long a$By 8) discussions. This work was supported by the U.S. Depart-
>1. ment of Energy, Office of Science through Contract No.

We hope that our analytical results for tunneling DOS of W-31-109-ENG-38. G.S. gratefully acknowledges the sup-
granular metals given by Eqé3) will stimulate further ex-  port of GRK 384.
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