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We investigate the effect of Coulomb interactions on the tunneling density of states(DOS) of granular
metallic systems at the onset of Coulomb blockade regime in two and three dimensionssd=2,3d. Using the
renormalization group technique we derive the analytical expressions for the DOS as a function of temperature
T and energy«. We show that samples with the bare intergranular tunneling conductancegT

0 less than the
critical value gT

C=s1/2pddlnsEC/dd, where EC and d are the charging energy and the mean energy level
spacing in a single grain, respectively, are insulators with ahard gapin the DOS at temperaturesT→0. In 3d
systems the critical conductancegT

C separates insulating and metallic phases at zero temperature, whereas in the
granular filmsgT

C separates insulating states with the hard(at gT
0,gT

C) and soft(at gT
0.gT

C) gaps. The gap in the
DOS begins to develop at temperaturesT* ,ECgT

0 exps−2pdgT
0d and reaches the valueD,T* at T→0.
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Granular materials, a focus of the current mesoscopic
physics, is a unique testing area for general concepts of dis-
ordered systems(see Refs. 1–4). One of the remarkable fun-
damental features of granular metals is the strong on-site
Coulomb repulsion that leads to the suppression of transport
at low temperatures and to an insulating ground state at low
bare intergranular conductancesgT

0,gT
C=s1/2pddlnsEC/dd,

whered is the dimensionality of the granular array,EC andd
are the charging energy and the mean energy level spacing in
a single grain, respectively. Good progress in understanding
this insulating state has recently been made;4 yet, despite the
impressive advance, the satisfactory picture of the Mott
(metal-insulator) transition that occurs atgT

0=gT
C, and of the

physics of its vicinity, is still lacking. One of the fundamental
questions that remains open is the suppression of the tunnel-
ing density of states that always accompanies Mott transi-
tion. In this Report, we develop a quantitative approach that
enables us to investigate Mott transition in granular metals
and derive the associated tunneling density of states in its
vicinity.

The density of states(DOS) is a fundamental quantity that
determines most of the properties of the system involved,
and the electronic transport is a key phenomenon where the
manifestations of the essential DOS features may be most
pronounced. A general technique to treat transport properties
of granular metals in the high temperature regimeT.gTd
was developed recently in Ref. 4. It was, in particular, shown
that the conductivity of granular metals can be described in
terms of the renormalized temperature dependent intergranu-
lar tunneling conductance given by the following expression

gTsTd = gT
0 − s1/2pddlnfgT

0EC/Tg, s1d

which holds as long asgTsTd.1. The conductivity of the
sample is related to the tunneling conductance asssTd
=2e2gTsTda2−d, wherea is the granule size and the factor of
2 is due to the spin. From Eq.(1) follows that at temperature

T * , ECgT
0e−2pdgT

0
, s2d

the renormalized conductance,gTsTd, is strongly suppressed
and approaches small values where renormalization group
breaks down. Equation(1) is valid only at temperatures
T.gTd (Ref. 5) whereas in the opposite case,T,gTd, the
conductance renormalization(1) is saturated and the system
behaves essentially as a homogeneous disordered metal.6

Comparing two relevant energy scalesT* and gTd, one
concludes6 that if (i) T* ,gTd (or, equivalently,gT

0.gT
C)

then, the renormalized conductance is still large at tempera-
turesT,gTd and the low temperature phase of the system is
similar to that of the disordered metals. Alternatively, if(ii )
T* .gTd (or gT

0,gT
C), the conductance of the system be-

comes significantly suppressed atT,T* reflecting thus the
onset of the Coulomb blockade regime. In the latter case one
expects that atT,T* the Coulomb gap begins to develop
(reaching its maximal value at zero temperature) and, as a
result, a noticeable suppression of DOS even at finite tem-
peratures,T,T* occurs.

In this Report, we consider the tunneling DOS of granular
metals with the bare tunneling conductancegT

0,gT
C at the

onset of Coulomb blockade regime at temperaturesT.T*
[case(ii ) above]. We show that Coulomb blockade strongly
suppresses the tunneling DOS,nsTd. For 3d granular samples
nsTd is given by

nsTd
n0

= F1 −
1

6pgT
0 ln

gT
0EC

T
G3A

, s3ad

whereas for granular films we obtain

nsTd
n0

= FgT
0EC

T
G1/pF1 −

1

4pgT
0 ln

gT
0EC

T
G4gT

0

. s3bd

Here n0 is the DOS for noninteracting electrons andA
=0.253 is the dimensionless constant. Equations(3) hold for
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temperaturesT.maxsT* , gTdd where the temperatureT* is
given by Eq.(2). We note that according to Eqs.(3) the DOS
vanishes exactly at the same temperatureT* as the renormal-
ized conductancegTsTd in Eq. (1).

We show that the results(3) can be generalized to finite
frequency by substitutionT→maxhT,«j. In this case Eqs.
(3) can be applied even forT→0 provided« is larger than
the characteristic energyD that coincides with the tempera-
ture T*

D , ECgT
0e−2pdgT

0
. s4d

From Eqs.(3) one can see that the tunneling DOS is
strongly suppressed at energies«,D. Thus, one concludes
that forgT

0,gT
C the system is an insulator at zero temperature

with the Coulomb gapD given by Eq. (4). Although the
tunneling DOS behaviorns«d andnsTd in Fig. 1 in the region
T, «,D cannot be directly derived from our formulas[and
therefore there is no reasons to expect thatns«d and nsTd
should be the same outside the applicability domain] in this
region the behavior of the tunneling DOS can be obtained on
a qualitative level with the help of physical arguments. One
notes that the scaleD represents the Mott gap. Thus, at zero
temperature the tunneling DOS,ns«d is strictly zero for«,D
as shown in Fig. 1(a). At the same time the temperature
dependence of the tunneling DOS,nsTd for T,D must have
the following activation form:

nsTd , n0e
−D/T, T ! D, s5d

as shown in Fig. 1(b).
Equation (1) generalizes straightforwardly to finite fre-

quencies by the substitutionT→maxhT,vj; this allows us to
relate the frequency dependent conductivity,ssvd with the
tunneling density of states at zero temperatures,T=0: For 3d
granular samples we obtain the following scaling relation:

nsvd
n0

= Fssvd
s0

G3A

, s6ad

where s0=2e2gT
0a2−d is the high temperature conductivity

with e being the electron charge. For granular films we get
the following expression:

nsvd
n0

= SD

v
D1/pSessvd

s0
D4gT

0

, s6bd

wheree<2.7182. Equations(6) are useful for the compari-
son of our predictions with the experimental data.

Now we turn to the quantitative description of our model
and derivation of Eqs.(3): We consider ad-dimensional ar-
ray of metallic grains. The motion of electrons inside the
grains is diffusive and they can tunnel between grains. We
assume that in the absence of the Coulomb interaction, the
sample would be a good metal.

The system of weakly coupled metallic grains is described
by the Hamiltonian

Ĥ = Ĥ0 + Ĥc + Ĥt. s7ad

The term Ĥ0 in Eq. (7a) describes noninteracting isolated

disordered grains. The termĤc describes the Coulomb repul-
sion and is given by

Ĥc =
e2

2 o
i j

n̂iCij
−1n̂j , s7bd

wherei stands for the granule number,Cij is the capacitance
matrix, and n̂i is the operator of electrons number in the
i-th granule. The last term on the right-hand side,(rhs) of Eq.
(7a) is the tunneling Hamiltonian

Ĥt = o
i j ,p,q

tijai,p
† aj ,q, s7cd

whereai,k
† sai,kd are the creation(annihilation) operators for an

electron in the statek of the i-th grain andtij is the tunneling
matrix element corresponding to the points of contact of
i-th and j-th granules.

As it was shown in Ref. 5, at temperaturesT.gTd the
model given by Eq.(7) can be effectively described in terms
of the functional proposed by Ambegaokar, Eckern, and
Schön(AES) in Ref. 7

S= Sc + St, s8ad

whereSc is the charging part of the action

Sc = o
i j
E

0

b

dt
dfi

dt

Cij

2e2

df j

dt
, s8bd

and the second term on the right-hand side of Eq.(8a) de-
scribes tunneling between the granules

St = 2pgTo
i j
E

0

b T2dtdt8

sin2fpTst − t8dg
sin2Ffi jstd − fi jst8d

2
G .

s8cd

Here fi jstd=fistd−f jstd is the difference between the
phases of thei-th and j-th granules. In the metallic regime
we may neglect winding numbers in the phases. We use the
renormalization group technique to calculate DOS. The
charging part of the action,Sc in Eq. (8a) determines the
upper frequency cutoff.

FIG. 1. Schematic behavior of the tunneling density of states as
a function of(a) energy« at zero temperature and(b) temperatureT
at «=0.
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In terms of the functional approach based on the action
(8a), DOS is expressed as4

nsvd
n0

= T Im E
0

b dteivnt

sinpTt
ke−iffistd−fis0dglvn→−iv, s9d

where analytical continuation from bosonic Matsubara fre-
quenciesvn=2pTn is assumed on the rhs of Eq.(9). Follow-
ing the standard renormalization group procedure we sepa-
rate the fieldf into slow,fs and fast,f f parts and integrate
over the fast field in Eq.(9). The fast fields belong to the
infinitesimal volumedS in the configuration space of the
quasimomentum,q and frequencyv that represents the en-
ergy shelldL. Using the one-loop approximation we obtain
the following RG equation for the conductancegT:4

dgTsLd
dL

=
1

2pLd
. s10d

Performing the integration in Eq.(10) we obtain Eq.(1).
With the same accuracy for the flow equation of the density
of states we get

d lnsn/n0d = adE
dS

dv

2p

ddq

s2pddGfsv,qd. s11d

Here the Green’s functionGfsv ,qd of the phase fieldsf is
defined on the scalesL

Gfsv,qd =
1

2gTsLd
1

uvuEq
. s12d

In Eq. (12) we introduced the notationEq=2oaf1−cossqadg
with haj being the lattice vectors. For simplicity we assume
the periodic arrangement of grains. The integration in Eq.
(11) is going over the infinitesimal volumedS in the sv ,qd
configuration space that corresponds to the energy interval
dL. The proper way to chose a particular form ofdSdepends
on the dimensionality of the sample: For 3d samples the
integrals over the quasimomentum converge and one can
simply choosedS=s2p /ad3dL. This leads to the following
differential equation:

d lnsn/n0d =
A

2p

dL

LgTsLd
, s13d

whereA=a3ed3q/ s2pd31/Eq<0.253 is the numerical con-
stant. Integrating overL in Eq. (13) in the rangesT,gT

0ECd
we obtain Eq.(3a) for DOS of the 3d granular metals.

The 2d case is different since the direct integration over
the quasimomentum,q in Eq. (11) would lead to the infra-
red divergence. In this case it is natural to introduce the
infinitesimal volume,dS in the following way:

E
dS

dvd2q =E dvd2qdsuvuEq − LddL, s14d

such that on the energy shellL the propagator(12) will not
be divergent sincevEq=L. This complication does not

manifest itself in the renormalization equation for conduc-
tance(10) since the conductance renormalizations come only
from distances of the order of the grain size.4 Using Eq.(14),
performing the integration over thev, q in Eq. (11) and
taking into account the fact that the upper cutoff for fre-
quency,v is gTECsqd, where for 2d granular samples the
charging energy,ECsqd is given by the expressionECsqd
=pEc/qa, with the logarithmic accuracy we obtain the fol-
lowing equation:

d lnsn/n0d =
1

4p2

1

LgTsLd
lnFgTEC

L
GdL. s15d

Integrating Eq.(15) over the variableL in the interval
sT,gTECd we obtain DOS as given by Eq.(3b) for 2d granu-
lar samples. Equation(3b) was derived for long range Cou-
lomb interaction. For short range Coulomb interaction(this
may happen due to the presence of external screening) the
upper cutoff forv-integration in Eq.(11) is q-independent
and is given bygTEC. In this case the extra factor 1/2 will
appear in the right-hand side of Eq.(15) and as a conse-
quence the final result for the DOS in Eq.(3b) will be modi-
fied asnsvd /n0→ fnsvd /n0g1/2. In the limit of large tunneling
conductance,gT

0@gT
C one reproduces the result of Ref. 4 for

the tunneling DOS of granular metals.
Although our theory applies to 1d granular arrays, the

results in this case should be taken with caution when com-
pared with experimental data: the problem is that the con-
ductivity of 1d system is usually controlled by the weakest
junction and thus must be described by the conductance dis-
tribution function8 rather than by the average value of the
conductance. Thus even small fluctuations of conductance
could be important in 1d case, especially close to the pre-
dicted transition atgT

0,gT
C; we, however leave the detailed

analysis of this situation to the forthcoming publication.
In conclusion, we have investigated the effect of Coulomb

blockade on the tunneling DOS of granular metals in the
limit of large tunneling conductance between the grains. We
have determined the critical value of tunneling conductance
gT

C=s1/2pddlnsEC/dd below which the granular metal be-
comes an insulator with a “hard” gap at zero temperature.
For 3d samples this value of critical conductance corre-
sponds to a metal-insulator transition, as granular samples
with gT

0.gT
C are metallic at zero temperature.6 This value of

gT
C=s1/2pddlnsEC/dd explains the long known puzzling fact

that in 3d systems the metal insulator transition occurs at
gT<0.1.

The situation is different for 2d granular systems since in
this case even samples withgT

0.gT
C are insulators at tem-

peraturesT→0 due to interaction and quantum effects,6

similar to those that take place in homogeneously disordered
metals.9–11 Nevertheless even in 2d case the critical value of
conductancegT

C represents the boundary between two physi-
cally different regimes at temperaturesT→0: Samples with
gT

0,gT
C represent the “hard” insulators, with a hard gap in the

DOS, while samples withgT
0.gT

C are insulators with a soft
gap in the DOS similar to homogeneously disordered metals.
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Our results have a logarithmic accuracy, i.e., the appear-
ing in the theory logarithm should be large. The fact that the
critical tunnelling conductancegT

C can be even less than one
for realistic values of ratioEc/d due to extra coefficient
1/2pd does not invalidate our theory as long as lnsEc/dd
@1.

We hope that our analytical results for tunneling DOS of
granular metals given by Eqs.(3) will stimulate further ex-

periments on transport and thermodynamic properties of
granular metals.
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