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Charge Transfer between a Superconductor and a Hopping Insulator
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We develop a theory of the low-temperature charge transfer between a superconductor and a hopping
insulator. We show that the charge transfer is governed by the coherent two-electron–Cooper pair
conversion process time-reversal reflection, where electrons tunnel into a superconductor from the
localized states in the hopping insulator located near the interface, and calculate the corresponding
interface resistance. A specific feature of this problem is the interplay between the time-reversal reflection
at the interface and transport through the percolation cluster. To allow for this interplay, we have
generalized the connectivity criterion of the percolation theory to include surface effects. We show that
the time-reversal interface resistance is accessible experimentally, and that in mesoscopic structures it can
exceed the bulk hopping resistance.
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The transmission of the charge through the normal
metal-superconductor interface occurs via the electron-
hole conversion known as the Andreev reflection process:
An electron incident from the metal side with an energy
smaller than the energy gap in the superconductor is con-
verted into a hole which moves backward with respect to
the electron. The missing charge 2e (an electron has charge
�e and a hole �e) propagates as an electron pair into the
superconductor and joins the Cooper pair condensate [1].
Correspondingly, a Cooper pair transfer from the super-
conductor is described as the Andreev reflection of a hole.
This Andreev transport channel is characterized by the so-
called Andreev interface contact resistance. Since transport
current is introduced into a superconductor via normal
leads, the Andreev reflection phenomenon is a foundation
for most applications of superconductors (see Ref. [2] for a
review).

There exists, however, an important experimental situ-
ation of the hopping insulator (HI) coupled to a measuring
circuit via superconducting leads (see, for example, [3]),
where the conventional Andreev reflection picture does not
apply. The transport in hopping semiconductors occurs via
localized (nonpropagating) single-particle states [4] with
undefined momentum, and, therefore, a Cooper pair on the
superconductor side cannot form. A single-particle trans-
port through the interface is exponentially suppressed,
/e��=T , where � is the superconductor gap, the tempera-
ture T being measured in energy units; therefore, to explain
the finite conductivity observed in experiments, one needs
Andreev-type processes capable to facilitate two particle
transfer through the hopping insulator-superconductor in-
terface allowing for Cooper pair formation. The possibility
of such a transfer through the hopping-superconductor
interface was discussed in Ref. [5], but no quantitative
theory of hopping transport-supercurrent conversion was
presented.
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In this Letter, we develop a theory for the transport
through the HI-superconductor interface and derive the
corresponding contact resistance. We show that the low-
temperature charge transfer occurs via the correlated pro-
cesses mediated by the pairs of hopping centers located
near the interface. This process is close to the conventional
Andreev electron-to-hole reflection into a normal metal,
the exponential suppression of transport specific to a
single-particle processes being lifted. Thus, despite the
limitation in the number of coherent hopping centers that
can carry Andreev transport, the resulting contact resist-
ance can become low as compared to the resistance of the
hopping insulator. However, in mesoscopic structures, the
interface resistance can be comparable to or even exceed
the hopping resistance. The proposed mechanism resem-
bles the so-called crossed Andreev charge transfer [6],
discussed recently in connection with a superconductor-
dot entangler [7,8]. The difference is that in Refs. [7,8] the
transport mediated by artificial quantum dots was consid-
ered. In our case, the transport occurs via randomly located
sites in the HI, and the main problem one has to solve is
finding the optimal configuration of the sites responsible
for the charge transfer. Hereafter, we will refer to the
proposed charge transfer mechanism as to the time-
reversal reflection.

Let a superconductor (S) and an HI to occupy the ad-
jacent 3D semispaces separated by a tunneling barrier (B).
The presence of the barrier simplifies calculations which
will be made in the lowest nonvanishing approximation in
the tunneling amplitude T0. This models the Schottky
barrier usually presenting at a semiconductor-metal inter-
face. In the linear response theory, the conductance is
determined by the Kubo formula [9] for the susceptibility,
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FIG. 1. The diagram describing the time-reversal reflection.
Lines with one arrow correspond to the Green’s functions in the
HI. They are associated with either center 1 or center 2. Lines
with two arrows correspond to anomalous Green’s functions; see
[11]. Squares correspond to matrix elements of the tunneling
Hamiltonian (3).
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as G � lim!!0!�1 Im��!�. Here Î�t� is defined as [10]:

Î�t� � iedT0

Z
d2r�a��r; t�b�r; t� � H:c:�;

where r is the coordinate in the interface plane, a��r; t� and
b�r; t� are creation and annihilation operators in the semi-
conductor and superconductor, respectively, and d is the
electron localization length under barrier. The susceptibil-
ity ��!� is calculated by analytical continuation of the
Matsubara susceptibility [11],

�M��� �
Z �

0
hT�I���I�0�ie

i��d�: (2)

Here T� means ordering in the imaginary time, � � 1=T.
In the expression for hT�I���I�0�i, one should expand to the
second order with respect to the tunneling Hamiltonian,

HT��� � dT0

Z
d2r�a��r; ��b�r; �� � H:c:�: (3)

Keeping only those second order terms that contain
hT�b�r; ��b�r0; 0�ihT�b��r1; �1�b��r2; �2�i products and,
thus, represent the time-reversal scattering in which we
are interested, one arrives at the expression

hT�Î���Î�0�i � e2jT0j
4
Z
d�1d�2

Y
i

d2ri�A� B�;

A�fxig� � F�x� x0�F
��x1 � x2�G�x1; x�G�x2; x0�;

B�fxig� � F�x� x1�F��x0 � x2�

	 �G�x0; x�G�x2; x1� �G�x0; x1�G�x2; x��;

(4)

where x � fr; �g, x0 � fr0; 0g, xi � fri; �ig; F�x� x0� �
hT�b�r; ��b�r0; �0�i is the anomalous Green’s function in
the superconductor, while G�x; x0� � �hT�a�r; ��a� 	
�r0; �0�i is the Green’s function in the HI. One can show
that the Andreev-type process we are interested in is given
by the first term of B�fxig� in Eq. (4). The relevant diagram
is shown in Fig. 1. This diagram is similar to that consid-
ered by Hekking and Nazarov [12] in connection with
tunneling transport between a superconductor and normal
metal. However, here the normal Green’s functions corre-
spond to localized states that lead to significantly different
results.

Using the Matsubara frequency representation, one ob-
tains

�M��� � 2Te2jT0j
4d4

Z Y
i

d2ri
X
!n

F�r� r1; !n�

	 F��r0 � r2; !n�G�r0; r; !n ��m�

	G�r2; r1;�!n�;

where �m � 2�mT and !n � �2n� 1��T. The normal
Green’s functions can be expressed through the wave
functions of the localized states, ’s�r� � ��a3��1=2	
exp��jr� rsj=a�, as

G�r; r0; !n� �
X
s

’
s�r�’s�r0�
i!n � "s

: (5)
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We have assumed that, for all the sites under consideration,
the voltage drops between the site and the superconductor
are the same. This is true when the partial interface resist-
ance due to a time-reversal pair is much larger than the
typical resistance of the bond forming the percolation
cluster. This situation resembles that considered by
Larkin and Shklovskii for the tunnel resistance between
the hopping conductors [13].

The anomalous Green’s function F�R;!n� is

F�R;!n� �
�gm�

2
�������������������
�2 �!2

n

p sin�RkF�
RkF

e�R=��
������������
�2�w2

n

p
=�: (6)

Here �p � �p2 � p2
F�=2m, gm � mpF=�2

@
3 is the density

of states in a metal, kF � pF=@, while � is the coherence
length in a superconductor. Since F�R� oscillates with the
period 2�=kF, integration over spatial coordinates along
the interface yields the factor a4=k6

Fj�lsj
2. Here �ls is a

projection of the vector Rls connecting the centers on the
interface plane. Note that the dependencies on R and � are
similar to that given by Eq. (21) of Ref. [7] for the pair of
the quantum dots near the superconducting interface.
However, the latter equation does not specify the depen-
dences of the transmission coefficients on the real physical
parameters of the interface and the localized centers.

The summation over the Matsubara frequencies !n is
standard,

T
X
!n

f�!n� �
I d"

4�i
f�"� tanh

"
2T
:

The contour of integration closes the cuts j"j> � along
the real axis. Upon analytical continuation, one arrives at
the following expression for the conductance:
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Here n�"� � �e"=T � 1��1 is the Fermi distribution, Uc is
the energy of the intersite Coulomb repulsion, and the z
axis is perpendicular to the interface. Equation (7) is based
on the assumption that the energy conservation law can be
satisfied. This is the case for macroscopic junctions with
area S� �ga@��T���1, where g is the effective density of
states in the HI, while ��T� is the typical hopping rate at
temperature T. This inequality is fulfilled in macroscopic
samples, although it can be violated in mesoscopic junc-
tions or at very low temperatures. In that case, phonon-
assisted processes may be important. For a macroscopic
junction,

P
l;s ! g2

R
d3rld

3rsd"ld"s. Note that g is the
density of states in the layer adjacent to the interface.
Because of screening by the superconductor, it is not
affected by the Coulomb gap and can be considered as
constant. Since we are dealing with the pairs close to the
interface, the Coulomb repulsion is suppressed by screen-
ing. This screening can be conveniently regarded as an
interaction of the charged particle with its image having the
opposite charge. Thus, the Coulomb correlations manifest
themselves as the dipole-dipole interaction, and for �sl �
a one arrives at Uc � e2a2=	�3

sl. Requiring that Uc < T,
one obtains a cutoff �sl � �T � a�e2=	aT�1=3. As a crude
estimate, we take d4  k�4

F , while T0 � Tpe��, with Tp 
"F. Bearing this in mind, one finds g2

mT2
p=k6

F 

g2
m"

2
F=k

6
F  1. Since the ratio Tp=�akF�

2 is of the order
of the typical energy of the localized state "d  @

2=ma2,
one obtains

G

Gn
 ga3"d ln

�
�
�T

�
e�2�; Gn 

e2

@
gaS"de�2�: (8)

Here Gn is the conductance of a boundary between a
normal metal and a HI, while S is the contact area. The
product gaS"d is nothing but the number of localized
centers within the layer of a thickness a near the interface.

The above approach holds, as we have already men-
tioned, only if the resistance of the typical time-reversal
resistor (TRR) is much larger then that of the critical
hopping resistor Rh � �h=e2
�e� , where 
 is a dimension-
less factor depending on the mechanism of electron-
phonon interaction and � is the hopping exponent [14],
i.e., with the exponential accuracy, as long as 4�> � .

There are many realistic situations where the barrier
strength � is not too large; the Schottky barrier at the
natural interface [5] is certainly a case like that.
Consequently, if � � 1, i.e., if the system is far from the
metal-to-insulator transition point, the procedure of sum-
mation over the localized states should be modified.
Namely, the choice of the pairs facilitating the charge
transfer depends on the structure of the bonds connecting
critical pairs to the rest of percolation cluster.
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According to the above considerations, the voltage drops
mainly on the bond connecting percolation cluster in the HI
with the critical TRR for which the distance between its
pair components is less than the correlation length L of the
backbone cluster. The incoherent electron transport can be
ensured by a single bond connecting the cluster to any of
the TRR sites. Thus, the ratio G=Gn is the probability to
find a TRR contacting the percolation cluster. To estimate
this probability, we have to generalize the connectivity
criterion of the percolation theory to allow for surface
effects.

Let us consider the layer with the thickness of the typical
hopping distance rh near the interface where all the bonds
of the backbone cluster necessarily have a site within this
layer. The total number of states in this layer is gSrh"h,
where "h � T� is the width of the hopping band. This
product can be estimated as ��=8��S=rh�

2, where � is a
numerical constant [14]. For the case of Mott variable
range hopping (VRH), � � 20.

The number of TRRs in this layer can be estimated as
follows. Let us note first that the conserving energy "s �
"l �Uc from the � function in Eq. (7) is associated with
the band given by the broadening � � �0 exp��2rd=a�.
Here rd is distance to the nearest neighbor in HI. Indeed,
the most natural source for the broadening of the resonance
is coupling of the localized states. Second, since both
electrons escape from the TRR through a single bond,
the in-plane distance �sl should not exceed the typical
distance between the hopping sites rh � a�=2� �.
Keeping the exponential accuracy, we arrive at the follow-
ing criterion that the resistance of TRR is less than the
resistance of a typical hopping resistor:

4�� ln
T
�0
�

max�j"sj; j"lj�
T

�
2rd
a
�

2�zs � zl�
a

< �: (9)

One may consider this equation as a generalization of the
‘‘connectivity criterion’’ to include the TRR. Here we deal
with the independent variables "s; "l; rd; zs, and zl over
which the averaging procedure should be done with an
account of the restriction of Eq. (9). Thus, the number of
the relevant TRRs is

8�2g3S
Z
d"l

Z
d"s

Z "s

0
d"d

Z
r2
ddrd

Z
dzsdzl

Z rh

0
�d�

	�
�

max�"s; "l�
T

�
2rd
a
�

2�zs � zl�
a

� ��
�
; (10)

where � � 1� �4�� ln�T=�0��=� < 1. Let us now mea-
sure the energies in units of �"h and lengths in units of
�rh, where "h � T� . Again, the product gr3

h"h can be
estimated as �=8, and we obtain the number of effective
TRRs as NA A�7S=r2

h, where

A�4�2��=8�2
Z
dl

Z
ds

Z s

0
dd

Z
�2
dd�d

Z
d�s

Z
d�l

	��max�s;l����d��s��l��1��0:1: (11)
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Consequently, G=Gn A�7 � 1. One concludes that the
difference between the ‘‘contact’’ resistances in normal
and superconducting states is dominated by the contribu-
tion of TRRs. Since GN � R�1

h S=L2,

�R � G�1
n � G�1 � �G�1 � �Rh�L

2=SA�7�: (12)

Note that the interface resistance is of the order of the
resistance of HI layer with the thickness L=�A�7� �
L. Since L a�2, one concludes that for � > 10 the
interface resistance can be comparable to or even exceed
the hopping resistance if the thickness of the sample (or of
the contact) is & 10 �m.

The resistance estimated above can be experimentally
measured as a magnetoresistance in magnetic fields higher
than the critical field for superconductivity (a similar effect
for a quasiparticle channel was studied in Ref. [5]).

We were implicitly assuming so far that the variable
range hopping occurs according to the Mott’s law. This
assumption certainly holds near the interface where the
Coulomb gap is screened by a superconductor. However, in
the bulk of HI, the Efros-Shklovskii (ES) law [14,15] can
become the dominant hopping mechanism. Then the value
of � in the connectivity criterion (9) will be controlled by
the Coulomb gap � ! �ES � ��1e

2=	aT�1=2, where �1 is
a numerical constant [14,15]. In this case, it turns out that
each bond of the ES backbone cluster finds some TRR
ensuring charge transfer. Thus, in the limiting case of a
weak tunneling interface barrier, the contact resistance will
be the same for both normal metal and superconductor
leads. This fact can be used to discriminate between Mott
and ES laws in the situation when it is difficult to do so
from temperature dependence.

Note that, in principle, the charge transfer involving
double occupied localized states is possible. However,
such a process would require an additional activation ex-
ponential factor / e�U=T , where U is the on-site correla-
tion energy. One can also consider processes where a
double occupied center (so-called D� center) serves as
an intermediate state for the phonon-assisted two-electron
tunneling. This channel can be neglected because (i) it
involves an additional small preexponential factor due to
phonon-assisted tunneling; (ii) for the corresponding 3-
sites problem, one also has either the additional tunneling
exponential / e�4rh=a or a small probability to form a close
triad of hopping sites.

To conclude, we have developed a theory of the low-
temperature charge transfer between a superconductor and
a HI and calculated the interface resistance. This resistance
is dominated by time-reversal reflection processes involv-
ing localized states in the insulator. It is the time-reversal
reflection process that allows the low-temperature mea-
surements of hopping transport utilizing superconducting
electrodes in the experimental setups. In the ES VRH
regime, the corresponding interface resistance is small as
compared to the bulk hopping resistance and is nearly
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equal to the resistance at the interface between the HI
and normal metal. On the contrary, in the Mott hopping
regime (relevant, in particular, for 2D gated structures), the
interface resistance grows much larger and becomes com-
mensurate (or even exceeds) to the bulk hopping resist-
ance. This effect is especially pronounced in the
mesoscopic samples. The contribution from the interface
resistance can be detected by application of the external
magnetic field: The relatively weak magnetic field will
drive the superconductor into the normal state but will
not affect the hopping transport, thus eliminating the
time-reversal reflection process. This effect holds even in
the case where the interface contribution is less than the
typical resistance of the hopping system itself.
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