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Motivation

Majorana states in hybrid superconducting junctions are actively searched

Proposed signatures:

e Zero-energy edge state
* fractional AC Josephson effect?

* Even/odd asymmetry in Shapiro steps?

Study non-equilibrium properties of a topological Josephson junction

[DC and DC + AC bias]
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Outline

1. Andreev bound states: conventional vs. topological Josephson junctions
* 4m-periodic phase dependence of the ABS energy
2. Scattering theory for voltage-biased Josephson junctions
* Signatures of Majorana states in the DC current
* No signature of the 4mn-periodicity in the AC current
* peakin the finite-frequency noise
3. Effective model: bound state dynamics
* Characteristic time scales

 DC bias
e DC + AC bias — Shapiro steps



1. Andreev bound states:
conventional vs. topological junctions



Andreev bound state
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Conventional Josephson junction

normal backscattering
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Topological Josephson junction

magnetic barrier HM — M(x)am (spin-flip scattering)
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Signatures
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Majorana fermion:
e Zero-energy state: ZBA in tunneling spectroscopy T
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2. voltage-biased topological junction:
scattering theory



Multiple Andreev reflections

* Electrons and holes gain energy
eV at each traversal

* Only quasiparticle states with
energy above the gap A can
escape in the leads

Octavio, Blonder,
Tinkham, Klapwijk, 1983




Scattering formalism
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Scattering formalism
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Derive recursion relations for A, and B
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Dissipative DC current

Gy=(e?/h)D
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midgap
resonance
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Onset at eV=A (instead of eV=2A)
in the tunnel regime

MAR features at eV=A/n (instead
of eV=2A/n)

at D=1: lg .= 2 lg s
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Vanishing AC current
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* AC current at conventional frequencies 2neV/h (no fractional effect)

* AC current vanishes at V-0 and/or D=0 (while Im[l_] is finite for SNS)

No AC Josephson effect?
DM Badiane, MH, JS Meyer (2011)



Bound state dynamics

e(x)/A
———— empty
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no average AC current at eV/h
due to dynamical coupling between bound state and continuum

signature in the noise?



Current-current correlation (noise)
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Peak at w=eV/h

Equivalently, the fractional ac effect is seen in transient regime
San-José, Prada, Aguado (2012)



3. Effective model for the
bound state dynamics




Weak backscattering
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Energy states near A
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superconducting
phase difference:
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Apply unitary transformation and diagonalize electron-hole space
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Bound state similar to the Shiba state created by a magnetic impurity in a superconductor
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Switching probability
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H=A+ Q;Z + [U;UZ + v\/ﬁaw] d(x) Time-dependent phase: x = 2eV't
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Adiabatic basis
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- Two-band version for transition from discrete state
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Markov process
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Similar models have been used for Landau-Zener transitions
near avoided crossings in conventional junctions:
Averin et al. 1995, Pikulin et al. 2012, Sau et al 2012...



Average current and noise

The long time probability is independent of initial state and 4n-periodic :
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Shapiro steps

2eV,.
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Average dc current
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Zero-frequency noise
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Tunneling regime D — 0

use tunneling Hamiltonian

— current & noise expressed in terms of (normalized) edge density of states

€

v(e) = TAS(e) + \/ - (9)2904 N

v(e)

1

0.5




Tunneling regime D — 0

DC bias:

- average current: I(V) = D% /de v(ew(e—eV)|[f(e) — fle —eV)]

no AC current!
(zero anomalous Green function at the edges)
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Tunneling regime D— 0

DC + AC bias:

- average DC current: Ty = Z J? (6‘5(:) 7 <V 4 kQ)
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no Shapiro steps!
photo-assisted current
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Conclusions

Majorana states are actively searched... but their signatures are subtle

e DCcurrent:

- MAR at eV=A/n
- tunnel limit: onset at eV=A

* No signatures of fractional AC Josephson effect in average current
non-adiabatic coupling between bound state and continuum

* Clear signature of fractional AC Josephson effect in finite-frequency noise
(without microwave) and zero-frequency noise (with microwave)
rate of non-adiabaticity

Refs: DM Badiane, MH, JS Meyer, PRL 107, 177002 (2011)
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