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motivation

STM measurements
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spatial fluctuations of A in TiN

» 3.3nm resolution, T=300mK

» sample TiN1: T_.=1.3K, 3.6nm thick
Y sample TiN2: T.=1.0K, 5.0nm thick
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the question

How can an inhomogeneous superconducting state form?

superconducting

it One possibility: Effect of local pressure
changes on T_ in thin films.

1
kBTC — 1.13th GXp <_—V>
Vo

Bardeen-Cooper-Schrieffer (1957)
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model

Thin film coupled to a massive substrate with different elastic properties.

superconducting
\ islands

For example:
TiN on silicon oxide

- What is the influence of a rigid substrate on a soft film?

Self-organized regular superconducting patterns in thin films

b



positive feedback

Classic superconductivity rests on phonon-mediated effective attraction
between electrons resulting in the formation of Cooper pairs [BCS].

Cooper condensate = change of elastic properties, i.e., the phonon spectrum

AT Aa

-> positive feedback for change in T, and the (average) lattice constant a
due to the substrate &> effective long-range interaction
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construction of the model

Two ingredients:

1.Ginzburg-Landau equation:

= free energy of the superconductor
= spatial dependence of the
superconducting order parameter

2.Linear elasticity
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Ginzburg-Landau theory: an introduction

Superconducting order parameter
Microscopic origin: Coherent state of Cooper pairs

p(r) = |l
N = |¢|2

p _ hvgp Ginzburg and Landau, 1950

free energy of a superconductor (expansion in ¢ and its gradients)

fGL:%/ddx{B<%+|w|2>2 i (V——A)¢| —(V x A —H)? }

OL(T)r\J(Tc_T)

2
Correlation or coherence length: ~ £2(T') = 2m|Z(T)| [ 2(T)+R?¢2[m=0]

linear term diffusion term

- Goal: Find solution showing the nucleation of superconductivity from the normal state
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Ginzburg-Landau theory

o 0Far
ot o~

kinetic equation:

steady state solution (no diffusion):
2 2
O=ay - By =Y =a/fx(Tc—-T)
=» the typical solution is a homogeneous superconducting state

“supercurrent”: Jx S [w* (V — ZA) @D]

« complex Ginzburg-Landau equation is one of the most-studied nonlinear
equations in the physics

» describes vast variety of phenomena: from nonlinear waves to second-order
phase transitions, from superconductivity, superfluidity, and Bose-Einstein
condensation to liquid crystals and strings in field theory

« often even on a quantitative level
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Ginzburg-Landau equation

model: time dependent Ginzburg-Landau equation (TDGL)

Opp = arp — B[P + 4V — o[y

linear term o< (T_-T) diffusion term higher order term for numerical
stability

Y. dimensionless order parameter
» typical values:

- =112 How is a modified by the influence of the substrate?

- v=0.01
' 8Tc (p())
Op

T.(p = po + Ap) = Te(po) + Ap
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construction of the model

Two ingredients:

1.Ginzburg-Landau equation v
2.Linear elasticity:

= free energy of the superconductor
= spatial dependence of the
superconducting order parameter
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elastic moduli

e uniform pressure:

e tensile strain:

e shear strain:

typical material values: (1-100) GPa

Self-organized regular superconducting patterns in thin films

= bulk modulus

= Young’ s modulus

=» shear modulus
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linear elasticity

e clastic lattice deformations: displacement field u(r)
e strain tensor: e=1/2[Vu+(Vu)T]

e Hooke’ s law, Cauchy stress tensor: g=Ee

e elastic constants/moduli:

Young's modulus (E): tensile response to linear strain
bulk modulus (K): volumetric response to shearing strains
shear modulus (u): response to shearing strains
Poisson ratio: v=1/2-E/6K

generalized Hooke’ s law: Oij = Cijkt €kt s 5], k,l€x,y,z

Using the symmetry of the Cauchy tensor 0,0, one finds that the stiffness tensor C=
{c;i} has 21 independent components!

eij = (0w + 0ju;)
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pressure corrections

pressure in the film due to elastic deformations:

p(s)(Qw7Qy7QZ 3d fO dz (8 u:(c) + 8 ’LL(S) +0 ’U,(S))

superconducting stress balance & continuity equations at the

islands

interfaces for flat interfaces

(S)(OOd)—Oforz—x Y,z
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{ ag)(O, 0,0) = Jg)(O, 0,0) for i = x,y, z

w!(0,0,0) = «{"(0,0,0) for i = z,y, 2
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ansatz for elastic equation

plain wave ansatz with exponentially decay in z-direction

O = s (A At )
— S

) eI vY (eqzzAl,y + Ay e u(()?);)
UQS) o1z Ty Y (quzALz 4+ AQ,ze—qzz>
u:(Bp) O, elz# 1T +1ayy
u:(yp) C, ed=>F1aertrayy
ugp) C, el tu=r+1ayy

- 9 unknown complex parameters

+ special solutions for the x & y coordinate due to interplay of (s) |¢‘2%‘

superconductivity and elasticity (extended stress-strain balance to account ~ Ug ; X —1

2
for energy transfer from superconductivity to elasticity & vice versa) q
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stress tensor & coupling parameter

e from the displacement fields we can derive the stress tensors:

o) = <8Zu§f) + (1 = 200) 8xu§f)> T~ o, due to lattice
J?Si) — 4 (C‘Lug(f) + (1= 200) ayugs)) .— Mismatch

o) = 2u0) [(1 + I/(S)) 8zu§f) + ) ((%U:(US) + 8yu?(f))}

olp) = A, ulP) + 9 ulP

u(p) (

(9Zu(p) + 8yugp))

Jg) = 2P [(1 + V(p)) 0, u ) 4 (P) (3 u(p) +90 u(p))]

e final expression for T_-correction due to elasticity in g-space:
UoK(q) | ’2
with Uo = 3K Ay [0T(po)/Op]
from K =—-VOp/0V ==p Ap=-K&Y =-3K5: x -3Kay

Self-organized regular superconducting patterns in thin films

16



elastic kernel X(q)

e FYI
K(q) = {,uf, (1 + 21/(;0)) [d q(1+ €' )9, — (e 9 — 1) (295 + 1)]

+d g [e4d RO (QM@) +2u® P gy — u(s)ﬂm)
— ()90 (,ﬁsm(s) +2,® [1 1) 4pe) ,,(p)ao])
_9e2d q (u(”)2 [1 n 2,,<p>] [1 n 2V(s>00] — %9 @) (990 () 4 ) _ 2V(p)00))]

+u® (et e 1) [4u(s)1/(s) (€241 — 1) 9 [0 — 1]

+ ) [1 + 20(®) (2 —209(%) — 300) + 20P) [219(5) + 1} [0 — 1] — 2e4 9 (V(S) (21/(p) (o0 — 1] + 200 — 3) — 1)

_ e (3190"‘) 24200 [5p — 1] (V(S) [dog — 2] — 1))”

+4,LL(p)2V(S)62d 4 [1 + 2V(”)} [40o — 3] sinh (d q)}/

{3d q {—/,L(“")2 (e® 9 — 1)219(5)2

+2u®) ) (249 — 1) (o) (1 40 40 _ g, 4 e2d [1 n V(mao])

—|—,u(7’)2(1 + 2,/(7))) <e4d 19(5) 4 21(%) [o0 —1] =1 - 2¢*! 1 [1 + 21/(8)00]> }}
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parameters

e parameters of the elastic potential

with

Self-organized regular su

d thickness of the film
(5:p) shear modulus

00 deformation stress

y(s:p) modified Poisson number
Uy potential strength

K bulk modulus

Aaj, linear expansivity

JT./0p T, change with pressure

Uo — 3KAO¢L [8Tc(po)/8p]

perconducting patterns in thin films
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K(q)
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final expression for o

Onp = arp — BIY|* + 7V — o[

e The original linear coefficient in the TDGL equation has to be replaced by

a — ay(r) = ao[Te(r) = T| + [dr'U(r —r')[s(r, t)|°

g >

includes the effect of effective long-range potential
(weak) quenched disorder

weak disorder effects are not important.



numerical realization

e The TDGL equation is solved using a quasi-spectral “split-step” method

the order parameter is discretized in x&y direction: ¢,

0. step

e calculate «v in Fourier space (using FFT)

1. step
® in real space do:

wij (t -+ At) — eAt(Oé—BWij|2+5|¢ij|4)¢ij (t)

2. step

e apply the diffusion kernel -yg? to 1, in Fourier space
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First stage: formation of amorphous state
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amplitude evolution over time

e order parameter correlation function: C(t) = N Z |¢k|2

04— . —
084 [
— 06- |
S 04- |
027 / 't 't
0.1 1 10 100 1000 10000
t
e temperature: 1= 0.81. o thickness:  d = 0.8&p
® units of time: Tar = 10_118

® coupling constant: U() = 2.2UC
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amplitude in the finial lattice configuration

12¢

coherence length:  &(T) o (T, — T)—l/z
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comparison: vortex & SC island lattice

Abrikosov, 1957

STM of NbSe,
T=400mK
B=0.5T

» =0 In the vortex core
» >0, H=0 outside

» hexagonal lattice
» depending on pinning R=0

Self-organized regular superconducting patterns in thin films
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e superconducting islands

' )

» >0 inislands

» =20, H>0, T_<T between
Islands

» hexagonal lattice

» depending on coupling and
material system is normal or
iInsulator
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initial phases




3rd stage: long-range order formation
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amplitude and phase evolution
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stronger coupling constant

“intermediate state” for larger U, and lower temperature: phase equilibration very slow

Self-organized regular superconducting patterns in thin films
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linear stability
Question: Under which condition do islands form?

Answer: When the homogeneous solution of the GL equation becomes unstable!
S(q) = (2UoK(q) = 1)(1 = T/T.) — vq*/9.38

0.4 ]
0.2f
0.04

0.2}
0.4
0.6 |

0.8 }

A long-range Coulomb potential does not show this instability!
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phase diagram

| homogeneous
superconducting state
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Superconductor-Insulator transition

e possible scenario

thickness of the film, d

oo

h=0

Self-organized regular superconducting patterns in thin films
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bulk values for U,

Material Teo, K %, K/GPa ar, 1/K K, GPa

(a) YBapCu—307_s 90.9 1.9-2.2 (a,b-axis) | 0.5-1 x10=°% | 200-250
(b) Ba(Fe;_,Coy)2As: 21 —26 (c-axis) —11.7x 107% | ~ 250
(¢) k-(Dg-ET)oCu(NCS)2 9 —30 (hydrostatic) 8 x 107¢ 12.2

Table 1: Coupling constants. Estimate of the coupling constant U

3Ka,0T./0p for different materials. The values are given for bulk materials
and therefore define only the lower limit for thin films. (a) data from [?] for
bulk, anisotropic material; (b) from [?]: bulk, x = 0.074; (¢) from [?]: bulk,

organic
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... in electric field
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summary and conclusions

elastic coupling of a thin film to a rigid substrate introduces an effective
long-range interaction

positive feedback of local change in T_ and lattice leads to the formation of
a regular, hexagonal island structure

Solution showing the nucleation of superconducting islands in a normal
background — in contrast to Abrikosov’s solution

transition into the island state show first order hysteretic behavior

pattern can be viewed as a self-assembled array of nano-scale Josephson
junctions

depending on elastic coupling and pinning the structure might be either in
the superconducting or insulation state!

—> can be a key scenario for the superconductor-to-insulator transition in thin

homogeneous films
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