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analytical approach

well separated length and energy scales

weak disorder, unbounded

zero temperature 
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Yazdani and Kapitulnik, Phys. Rev. Lett. 74, 3037–3040 (1995)  

Two-Dimensional a-MoGe Thin Films 
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2D SC/I quantum phase transition

Goldman  and Markovic, Physics Today 1998, amorphous very thin Bi films (near 10    )  





Giant negative magnetoresistance (GNM) 

Be thin films 



Amorphous films In2O3-x 

Magnetic field dependence of resistance 
in one sample at different starting 
deviations from the SIT on the insulating 
side.   

Temperature dependence of resistance 
in two samples at different magnetic fields. 
Extracted from the works: 

Temperature behavior of Conductivity: activation at small fields B<10T, Mott VRH  
behavior at larger B: 

R ∼ e(T0/T )1/4



Bi amorphous films 



Superconductor to insulator transition of InO, TiN, Bi, Be, high-Tc materials 

Giant negative magnetic resistance

Gantmakher et al. 2010

Common believe: 
Cooper pairs survive in insulating phase!

d=3 VRH



 Theoretical works 

2d , no magnetic field. Coulomb interaction + disorder suppresses superconductivity. 
                                            No reasons for GNM. 

A. M. Finkelstein, JETP Letters 45, 46 (1987). 

K. B. Efetov, JETP 78, 1015 (1981). 

Cooper pairs are bound in granules and can tunnel between them. Depending on 
relative strength of interaction and hopping amplitude the S or I phase is realized. 
       No real grains in films, the interaction and hopping are not independent (FIKQ) 

M.P.A. Fisher, Phys. Rev. Lett. 65, 923 (1990). 

 2d. Duality between vortices and CP. In superconductors CP are free, vortices are bound. 
In insulators CP are bound, vortices are free. Universal resistance at SIT transition. 
               Experiments do not confirm the duality and universal resistance. 



Disappearance of superconducting islands in large magnetic field. 



Numerical solution of 
Bogoliubov-de Gennes 
equations on a 2d lattice with 
random distribution of single 
particle levels. Islands of 
Cooper pairs.  
Comparatively homogeneous 
electron density. Localization.  



Cooper pairs in insulating phase. Enhanced gap. 
Important role of the fractal states near localization 
threshold. 



Purpose of this work: 

Explanation of the anomalous magnetic behavior 

Construction of complete phase diagram 

We show that 

There exist 3 different non-superconducting phases: 
Bosonic insulator, Fermionic insulator and metal 

Transitions between these phases are due either to Zeeman 
depairing or to squeezing of Cooper pairs by potential 
wells of disordered potential.  



•! Cooper pairs survive in insulator phase. CP have a fixed binding energy ∆

•! CP can be destroyed either by paramagnetic effect (Zeeman energy exceeds binding energy)  
  or due to squeezing (the size of the droplet becomes of the order of the  CP size).  

•! Random potential acting on CP is uncorrelated Gaussian 

•! Coulomb forces on a distance > ne
-1/d are weak due to screening.  

•! CP density n is 3 to 4 orders of magnitude smaller than the electron density 

•!A weak      long-scale random potential can localize them and form SC droplets 

•! Fluctuations of electron density on the distance  ξ are small (Ghosal et al) 

•! Near SIT   kF l ≈ 1, l ≈ 1nm, n3 ≈ 1021cm−3

Model assumptions

•! Number of CP is not conserved, but their average density is well defined  nb ∼
∆

EF
ne



Random potentials are due to stray electric fields 
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Random potentials are due to stray electric fields 
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mean free path or extension of localized states



But how to treat random potential ?

Replica trick               translationally invariant system

Here:                          method of optimal fluctuation

Idea for GNM:  

CP pairs fill localized states of the random potential 
forming Bose-insulator. High magnetic field causes depairing.  
The appearing fermions are weakly localized. 
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�Ψ|Ĥ|Ψ�(R, λ) = E → λ(E,R)

→ ν(E) ∼ e−Φ(R)

Simplification Ψ(r) ∼ e−r2/2R2
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Phase diagram of a superconductor near the SIT transition. 
The dashed line separates the region of existence of a glass state. 
The dotted curve corresponds to a maximum of resistance.  

V.F. Gantmakher and V.  Dolgopolov, UFN (Russian Physics, Uspekhi, Jan. 2010. 

disorder

Zero magnetic field



�Ψ|Ĥ|Ψ�(R, λ) = E → λ(E,R)

→ ν(E) ∼ e−Φ(R)

Simplification Ψ(r) ∼ e−r2/2R2

�
d3r

U2

2κ2
= Φ(R, λ(E,R)) → minR → E = E(R)

Ec 

extended states localized states 

-Ec Em 

R 

Zero magnetic field

E(R) = − �2
2mkR2

ν(R) ∼ e−(Lb/R)4−d



R 

Density of well with radius smaller than R � Lk

nw(R) =

� R

0
dRν(R) ∼ e−(Lk/R)4−d

Tunneling amplitude t(R) between  
                      wells with radius < R   :  
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Zero magnetic field



Fill now N bosons in random potential
(assume this fills wells up to radius R)

R 

E0 
E2 E1 

U(x) 

CP interaction
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2mkR2

+ g
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Rdnw(R)
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minimization

⇒ R(n) ⇒ µ(n)

Babichenko2

R(n) ≈ Lb/(ln(nc/nb))
1/(4−d)

µb=− Eb ln2/(4−d)(nc/nb)

Fill now bosons into random potential
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SIT

Model: random Josephson junction array  
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Phase diagram of a superconductor near the SIT transition. 
The dashed line separates the region of existence of a glass state. 
The dotted curve corresponds to a maximum of resistance.  

disorder

Extension to finite  magnetic field



Density of states

Landau levelLifshitz tail
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Extension to finite  magnetic field



Application of magnetic field destroys some  CPs:  where to put the fermions?

µb − 2∆ ≥ 2 (Ef + Ez)

Increase magnetic field such that

Optimal fluctuation of random potential for bosons and fermions, respectively

Lc,f = 16Lc,b

Eb

bosonic well fermionic wellboson in fermionic well

Ef ≈ 10−3Eb

highest bosonic level
lowest fermionic level

Ẽb(Ef ) = µb Ef

µb



w � �B =
�

c�/eB Diamagnetic effect is negligible 

Thin film in parallel field

SC to insulator transition  happens at

nb ≈
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controlled by disordernbg ≈ Eb

density of CP
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Metal-Insulator Transition (MIT) 
Metal-Insulator Transition (MIT) 
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How the density of fermions grows above the BFT? 

Equilibrium condition: 

Conservation of number of electrons: 

Now it is an equation determining nf 
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Thin film in perpendicular field

diamagnetic effects relevant

B⊥
BFT ≈ Bc[1 +
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γ = 1−m0/mge > 0

Resistivity maximum
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Wells more narrow than     , then suppression of Copper pairs:  Squeezing
(alternatively: level spacing larger than gap i.e. at least on CP in well)
  

ξ



Squeezing

fermionic wave functions overlap



 Three dimensional system
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R = R0 exp[− (T0/T )
1/(d+1)]

Resistivity

Assume  Mott variable range hopping :

Increase for increasing field since tail of wave function changes from simple 
exponential to Gaussian

B > BBFT T0Decrease for increasing field                       since       for 
bosons is much larger than for fermions. 
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Conclusions 

•! Phase diagram depends on dimensionality. In thin films it depends on the 
   magnetic field direction. 

•! In all considered situations there are 4 interplaying 
  phases: Bose Insulator, Fermi Insulator, Metal and Superconductor 

•! Transitions between them are due either to paramagnetic depairing or 
   to squeezing of Cooper pairs by the random potential well in magnetic field 

•! Negative magnetoresistance appears due to proliferation of fermions which 
   are weakly confined by the random field. 

•! In thick film or bulk the phase diagram does not depend on direction of 
   magnetic field, however the resistivity must be anisotropic. 


