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Question:
What happens, when the attractive and repulsive
components of the Coulomb interaction compete:
• Does first superconductivity and then the  

metallic state break down -
• or vice versa?

Is it possible to realize a correlated many-body 
state from localized Cooper pairs, which is an 
insulating analog of the BCS-ground state ?



In 2d superconducting films the zero-resistance state
breaks down via the unbinding of thermally excited
vortex/anti-vortex pairs:
vortex Berezhinskii-Kosterlitz-Thouless transition

The zero resistance state is characterized by a well 
defined phase and uncertain number of Cooper pairs.

Is it possible to realize the inverse case of well defined
number and uncertain phase ?

Yes – in granular films / Josephson networks.

If EJ < EC ,  numbers are fixed by Coulomb blockade

In such systems a charge Berezhinskii-Kosterlitz-Thouless
transition is predicted to exist !
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BKT physics in a Josephson junction array

binding energy  of a 
vortex-antivortex pair

combine and

entropy of a vortex-
antivortex pair

nf (I) : 
number of free vortices, 
depends on current



5

Current, log(I)

Vo
lt

ag
e,

lo
g(

V)
V ∝ Ι α(Τ)

T > TBKT

T < TBKT

α = 1 α > 3

BKT physics: I-V characteristics (vortices)



Vortex BKT transition in TiN thin films

linear response regime                           current - voltage characteristics

V ∝ Ι α(Τ)

experimental data by A. Mironov and T. Baturina, Novosibirsk



Caution: there may be different types of jumps
Example: Larkin-Ovchinnikov instability 

in strongly driven vortex flows

quasiparticles boil off from strongly driven vortex cores
- shrinking of the vortex core
- decrease of vortex viscosity
- incease of vortex velocity and dissipation

( much thicker films
20 nm > ξ )

D. Babic, C.S. et al.
PRB 65, 645 (2004)

completely different mechanism for jumps in V(I) than BKT 



In this talk, 'insulators' are characterized by
an Arrhenius-like R(T) dependence

Outline:

• direct superconductor/insulator transition in thin TiN films

• unusual ‚superinsulating‘ state at very low temperature

exploring the low-T regime:

• charge Berezhinskii-Kosterlitz-Thouless transition ?
• transition between insulating and superinsulating state:

dielectric breakdown vs. electron overheating
• size dependence of the resistance per square



Experiments on TiN films

thickness  d = 5 nm carrier density n = 2-4 1022 cm-3

depending on stochiometry

TiN films were formed by atomic layer chemical 
vapor deposition onto a Si/SiO2 substrate at 350 0C.

Composition:
Ti     N        Cl
1     0.94   0.035 ξd ~ 9 nm superconducting coherence length
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direct superconductor/insulator transition 
with thermally activated conductance (Arrhenius) on the insulating side

homogeneous TiN-films of 4-18 nm thickness
show a disorder-induced SIT

A. Goldman ´89

TiN

Bi
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magnetic field induced resistance enhancement in 
both:  insulating and metallic state

Qualitatively similar behavoir for 
insulating and superconducting 
films already in relatively small 
magnetic fields

Exponential decay of magneto-
resistance at high fields:

gradual suppression of  
superconducting OP

Very similar behavior of 
insulating and superconducting 
films for T > 600 mK

quasi-metallic 
phase at high B

low B:
‚Cooper-pair‘ - insulator !

T. Baturina, C.S. et al., PRL 99, 257003 (2007)



schematic phase diagram

gc g

S

MI
B

SIT

Disorder-driven
superconductor–insulator
transition

Quantum metallicity 
at a high-field side of SIT

Magnetic-field-tuned 
superconductor–insulator
transition

InOx, Be, and TiN films

gc = h/4e2



Compare 

nonlinear transport  (IV-characteristics)  

on the 

superconducting and insulating

sides of the SIT:
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thermally activated
vortex-antivortex pairs

thermally activated
charge-anticharge pairs ??

Berezhinskii-Kosterlitz-Thouless transition ?
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super-
conductor

‚super‘-
insulator?

7 nm 5 nm

Vinokur, Baturina, C.S. et al., Nature 552 (2008) 



A similar jump in the IV's has been seen before in 
amorphous InOx films in magnetic field :

Sambandamurthy et al. PRL 2004
PRL 2005

at Weizmann institute

no clear interpretation at that time

later understood as heating instability (Ovadia et al. PRL 2009)



An important complication : electron heating effects

Assumptions:
- intrinsic I(V) is linear – no internal energy scales induce non-linearity
- strongly varying R(T) produces heating instability
- decoupling between electrons and phonons (power law IV ~ T6)

Questions:
- power level 3 orders of magnitude higher than in our TiN-films
- is there really only one energy scale involved (linearity of intrinsic IV‘s ?)
- origin of the highly resistive state?

Volkov & Kogan
Sov. Phys. Usp. 11, 881 (1969)
Gurevich & Mints, 
Rev. Mod. Phys. 59, 941 (1987)
Ovadia, Sacepe & Shahar
PRL 102, 176802 (2009)
Altshuler, Kravtsov, Lerner & Aleiner, 
PRL 102,  176803  (2009)

similar to YSi-films (Mott-insulator):
Ladieu, Sanquer & Bouchaud, 
PRB 53, 973 (1996)



Phenomenology of Josephson networks 

conductance of an artificial Josephson junction array

The superconducting 
array turns insulating at 
higher temperatures !

J. Mooij, B.J. van Wees, 
L.J. Geerlings, M. Peters, 
R. Fazio and G. Schön

H. v.d.Zant, R. Fazio

Phys. Rev. Lett. 65, 645  (1990)





super-
conducting 
state at low 

B-fields

insulating 
state at 

intermediate 
B-fields

cusp-like B-
dependence of 

threshold voltage in 
insulating regime

1-d JJ – arrays show similar phenomenology !

formation of a collective charging energy



model films as network of Josephson junctions

M. Fistul,
V. Vinokur, T. Baturina, 
PRL 100, 086805 (2008)

Assume existence of SC islands in structurally homogeneous films 

and formation of a collective Coulomb gap depending on sample size : 

nonmonotonic B-dependence of activation energy T0 and threshold voltage 
VT resulting from frustration of Josephson coupling between SC islands

1d-fit

2d-fit

Kowal & Ovadyahu 
Sol.Stat.Comm. '94



resistance in perpendicular field much higher than in parallel field
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determine R 
from dc-IV-
characteristics:

very high 
resistances 
accessible!

New data on a sample superconducting at B=0



Out of Plane Magnetic FieldR(B)
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Compare samples deeper in the insulating regime

both the positive magnetoresistance and initial rise 
of T0 and VT disappear

T0(B) :  horizontal slope; VT(B) :  finite slope  
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Again jumps in IV, but also current below jump measurable



IV's display power-law behavior at the lowest temperatures !



IV characteristics 
become non-linear
below 60 mK

power law

with strongly 
T- dependent 
exponent α(T)

BKT transition usually 
assigned to  α = 3 

Charge-Berezhinski-Kosterlitz-
Thouless-like transition
smeared by disorder

D. Kalok, C.S. et al., arXiv:1004.5153
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logarithmic interaction between 
charge/anti-charge pairs required

very high effective dielectric constant needed 
to force electric field lines in plane!

Very close analogy to vortex BKT-transition:

Resnick et al., PRL '81,  Abraham at al., PRB '82

proximity-coupled 
JJ-arrays (Pb/Sn)

α
(T

 )

charge-BKT - transition:

R. Fazio Nature  552 (2008)   news & views
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dots: experiment
red: model of electron heating 
by electron-phonon decoupling

at T < 40 mK the heating scenario 

systematically overestimates I and VTh

perpendicular parallelmagnetic field:

see also Ovadia et al., PRL 102, 176802 (2009)



Histograms display broad range of switching voltage
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Compare data on an artificial insulating JJ-array:

T. Bergsten et al.  Chalmers '96

168 x 168 junctions
R = 27 kΩ per junction

voltage switching with 
width 30% of VT,max

non-monotonic variation 
with magnetic field

sometimes two 
peaks observed



0.5 µm

500 µm

5 µm
Study 
dependence of 
R on sample 
size:

prepare squares 
between 0.5 and 
500 µm side length



R(T) becomes size dependent:
sample B: insulating at B = 0
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linear to nonlinear behavior at low T



•thermally activated conductance

• collective Coulomb energy:

•Threshold voltage depinning,   eVT ~ EcL/d

/SI c BT T E k> =

characteristics of a granular model
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=

dd
LN λ,min where λ is screening length

Fistul, Vinokur, Baturina, PRL 100, 086805 (2008)

N : number of islands

Review: Minnhagen, RMP 59, 1001 (1987) 



Is there a granular structure of the SC OP ? 

Experiment on TiN: PRL 101, 157006 (2008)
B. Sacepe, C. Chapelier, T. I. Baturina, V.M. Vinokur, M.R. Baklanov, and M. Sanquer

Theory predictions:

Ghosal, Randeria, 
Trivedi, 

PRL (’98), PRB (’01)

Dubi, Meir, Avishai

Nature (’07)



schematic phase diagram (fluctation broadened)
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'Cooper-pair' insulator
linear conduction,
thermally activated conductance
heating instability of I(V)

SI

'Super'-
insulator
nonlinear conduction,
extreme T-dependence
dielectric breakdown

(sample superconducting at B=0) metal with quantum 
corrections



Conclusions
- insulating state with thermally activated (Arrhenius) conductance

- evolution from a insulator with activated conductance to a   
much lower  conductance (‘superinsulating’) state at very low T 

- power-law behavior of IV's at the lowest temperatures
- statistical distribution of switching voltages as in dielectric breakdown

charge-Berezhinskii-Kosterlitz-Thouless-like crossover

- logarithmic size dependence of activation energy on sample size

- R(T) and I(V) show even stronger size dependence at the lowest T

Open Questions
- existence/origin of island formation ?

- dielectric properties:

logarithmic interaction between charges ?

anomalies in the dielectric properties ?
DFG
GK 638
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