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1. Introduction: Motivation and goals: radiation into open space 
from moving lattice of Josephson vortices.

2. Boundary conditions for the phase difference accounting for 
radiation: no radiation for standard boundary conditions.

3. Analytical solution in the high field limit (perturbation theory).  
Estimates for nonlinear regime. 

4. Conclusions.



Introduction
• Josephson prediction of radiation from tunneling junction, 1962.

• Experimental observation by Dmitrenko et al. and Langenberger et 
al.,1965.

• Radiation power from 0.16 cm X 0.025 cm Sn-SnO-Sn junction in 
magnetic field 1.9 G was              W,  while power fed into junction 
was                W. 

• Langenberger et al. gave only “electric engineer” estimate for 
radiation power in terms of impedances.

• Proposal to obtain THz radiation from intrinsic junctions in layered 
superconductors, Latyshev and Matsuda, 2001 and Tachiki et al., 
2005. 

• Better understanding of the mechanism of radiation in terms of phase 
difference is needed to derive radiation.
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Sine-Gordon equation for the phase difference
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Relation between phase difference and ac fields
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Standard boundary condition
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The boundary conditions
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Boundary condition for 1D junction

Relation between fields at the boundary leads – outer space:
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Integrate both sides and use

boundary conditions at right and left sides
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inside junction at distances bigger than          from the edge.



Boundary condition for small circular 2D 
junction
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Radiation and dissipation power
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To derive radiation power and I-V characteristics we need to find
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by solving sine–Gordon equation with bound. conditions.



Results in the high field limit
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Moving vortex lattice

Reflected wave
Radiated wave

Reflections lead to formation of almost standing waves (Fiske
resonances broadened by dissipation and radiation).

0

2 ,zHh πλ
=

Φ



Results in the high field limit, 1D
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Drops of atI resVV > lead to steps in I-V characteristics.

Junction of Langenberger et al. was in nonlinear regime.
Weaker non-resonance radiation is present at H=0.



Nonlinear regime

For rough estimate we can take
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12102.0 −×≈radW W.

Numerical calculations are needed to find field and
size dependence of the radiation power.



Conclusions

• Boundary conditions in the presence of radiation are formulated.

• In a similar way boundary conditions for intrinsic junctions in layered crystals 
and for stack of usual junctions opened into free space are derived. 

• They account  for radiation and describe  also the electromagnetic coupling 
of junctions via open space. 

• For small junction in addition to dipole radiation also radiation due to 
electromagnetic modes inside junction is present. 

• It does not scale as R^4 for small R and so it is bigger for small junctions. It 
may contribute to decoherence in junctions used as a qubits. 

• Quantization for junctions in the presence of radiation is an intriguing 
problem due to dynamic boundary conditions.


