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Conclusions

The interplay of interactions and disorder fundamentally revises the 
common belief that 2D electron systems become insulating at low 
enough temperatures.

Using a large-N approximation scheme (valleys), we obtained a two-
parameter scaling theory that exhibits a metal-insulator transition in 2d.

The transition between the metallic and insulating phases is controlled  
by a finite-resistance unstable fixed point. 

The theory is internally consistent: there are no divergences in the 
interaction amplitudes at finite temperatures. 

The two-stage route (1984) to the MIT transition (first spins, next 
charges) has been revised.

The spin-susceptibility close to the transition diverges. The g-factor 
remains finite => this divergence is not related to any magnetic 
instability.

Numerically the parameters of the fixed point appeared to be small. This 
gives arguments in favor that the 2-loop calculations are adequate and 
sufficient in the large-N limit.



MIT for non-interacting electrons in D>2:
a competition between dimensions and the interference

(ignoring spin-orbit case)

MIT for interacting electrons in d=2: 
a competition between disorder and e-e

interactions

metallic phase stabilized 
by e-e interaction

disorder    takes       over

e-e interaction
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Close look at the critical region - C

( ) 0 ??cgβ =

Universal behavior in ultra-clean silicon MOSFETs:  different samples 
from  different wafers:  (a) V. M. Pudalov, (b) Heemskerk & Klapwijk

• Resistivities are essentially the same at the separatrices: ρc~ πh/e2

(critical densities are very different )

S V Kravchenko and M P Sarachik, Rep. Prog. Phys. 67 (2004) 1-44
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the geometrical factor in the Ohm’s law,  
disappears at d=2.2~ ( / ) ,d
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Scaling ideas in transport :  Thouless (74,77);     Abrahams, 
Anderson, Licciardello, Ramakrishnan (79); Wegner (79).
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Abrahams, Anderson, Licciardello, Ramakrishnan (79)
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the conductance g is assumed
to be the only relevant scaling
parameter

spin orbit case
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2D electron systems
eventually become localized

M-I transition:

a competition between the dimension
and the interference
(ignoring spin-orbit case)

scale is controlled by the temperature
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a fundamental difference between experimentalists and 
theorists: ρ versus σ
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2D electron states
eventually become localized

Si-MOSFET
low mobility µ=1,500cm2/Vs

11 2(3.8 37) 10 cmn −= − ×

the conductance g is assumed
to be the only relevant scaling
parameter

spin orbit case

(g) = dln(g)/dln(L)β
g ~ L >> 1

g ~ exp(-L/L
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Abrahams, Anderson, Licciardello, Ramakrishnan (79)

(data provided by V. M. Pudalov)
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Transport experiments in 2d (Si-MOSFET)
S. Kravchenko, et al., (1994)

low mobility   µ=1,500 cm2/Vs

11 2(3.8 37) 10 cmn −= − ×

high mobility   µ=39,000 cm2/Vs

11 2(0.7 1.3) 10 cmn −= − ×

11 2
2~ 10 ~c c
hn cm

e
πρ−

the M-I  transition?

2D electron systems
eventually become insulating
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what is specific for high mobility samples?
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I - insulating region
C - narrow critical region containing 

the separator

2e/h≤ρC*- non-monotonic region:

FET ≤< τ/=

the regions of my interest :
strongly interacting electrons
in the diffusive regime

Pudalov, et al., (’98)

M - region with no clear maximum

ρ (T) in a high mobility sample
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Closer look at the region - C*

diffusive electrons not too far from the
M-I transition.
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A universal picture with
single parameter scaling?
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there are non monotonic
curves near the M-I transition.

(data provided by V. M. Pudalov)



Low energy modes in a diffusive system

(non-linear σ–model with e-e interactions)
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electron-electron interaction in disordered 2D gas

the slow diffusion of the electrons  results in non-analytic corrections to 
the diffusion coefficient (conductivity) and the e-e interaction amplitudes

Altshuler,  Aronov(’80)
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The slow diffusion of the electrons 
results in non-analytic corrections
to the e-e interaction amplitudes

In conventional conductors 
γ2 is small and the net effect of 
interactions is localizing

.....+=δγ2 
(a prototype of 
the one-loop   
corrections)

can γ2 win?

Can the trend change and become 
anti-localizing?

warning:
this “Hartree-antilocalization” should not 

be confused with the Spin-Orbit effect.

( )ln 1/Tρ τ∝

γ2 in the presence of disorder 
increases at low temperatures.

Can γ2 become large as a result of    
the renormalizations? A. Finkel’stein (83)



Physical meaning of           :2γ
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Two parameter scaling
A. Finkel’stein (83)

the interplay of disorder and   
interaction is captured by 

a set of two coupled
Renormalization Group
equations for ρ and γ2 :

finite ρ increases γ2

while, γ2 reduces ρ
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developing of the insulating state occurs in 
2 stages:

first spins, only afterwards the localization of charges (1984).
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developing of the insulating state occurs in 
2 stages:

first spins, only afterwards the localization of charges (1984).
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Magnetic fluctuations in 2d metals 
close to the Stoner instability. 

B. N. Narozhny, I. L. Aleiner, and 

A. I. Larkin
Phys. Rev. B 62 (2000);



Superconductivity in disordered thin films:Superconductivity in disordered thin films: Giant Giant mesoscopicmesoscopic fluctuations.fluctuations.
SkvortsovSkvortsov and and Feigel’manFeigel’man PRL, 95 PRL, 95 

(2005)(2005)



2DEG in Si-MOSFETs:  two valleys

a
2Q2 0

π
≈

ml

ml mh

Lifting of the valley degeneracy
in a (001) layer

E

valence band

acceptors

gate voltage (Vg)
z

p-type bulk Si

n-type inversion layer

conduction band

ox
id

e 
la

ye
r

m
et

al
 g

at
e

F

Energy               is quantized in the 
z-direction

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

z

2
z

m2
k

0 !zk Q�
No intervalley scattering, 

but still electrons in different valleys 
are coupled by e-e interaction.

x, y (ml)
x, y, z

K300200 −≈

z  (mh)



0.0 0.2 0.4 0.6
T/EF

0.01

0.1

1.0

ρ(
πh

/e
2 )

  

n=0.67
n=0.72
n=0.77
n=0.83
n=0.88
n=0.94
n=0.99
n=1.10
n=1.21
n=1.43
n=1.75

 

  

    

M

C
*

I
C

µ=4.0 m
2
/Vs

(at 0.3K)

−2 −1.5 −1 −0.5 0 0.5 1
ρmax ln(T/Tmax)

0

0.2

0.4

0.6

0.8

1

 ρ
/ρ

m
ax

ρmax=0.57
ρmax=0.43
ρmax=0.35

Data from the region C* in a high-
mobility sample

• the drop of five times in ρ(T)
and its saturation has been captured 
in the correct temperature interval
• no adjustable parameters are 
used

A. Punnoose and AF, PRL (2002)
Pudalov, et al., (’98)

Analysis of the region C* in a high-mobility sample with RG for two valleys



RG equations successfully describes the region C*
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one-loop result: for 2-valleys, since T* is practically zero,
the existence of the Metal to Insulator  transition in 2D is (logically) unavoidable,
providing that the localization at strong disorder is undisputable.

2ln(ln1/ ) (2 )vT n∗ ∼

in the limit                     the theory is internally consistent  including T=>0vn → ∞



Valleys: the large-nV limit

A combined effect of the two spin projections and        valleys (flavors)

enhances the screening and makes the bare value of           to scale as 
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not more than one interaction per loop
in the large nV limit

Diffuson channel

Interaction in the Cooperon channel

Two loops - t2 contributions
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RG equations: β - functions to order t2  in the large N limit
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non-linear σ– model with e-e interactions
A. Finkel’stein (83)
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Physical consequence of the existence of the fixed point: 
thermodynamics at MIT have a critical behavior
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Pauli spin susceptibility

Prus et al., PRB 67, 205407 (2003)
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Conclusions

The interplay of interactions and disorder fundamentally revises the 
common belief that 2D electron systems become insulating at low 
enough temperatures.

Using a large-N approximation scheme (valleys), we obtained a two-
parameter scaling theory that exhibits a metal-insulator transition in 2d.

The transition between the metallic and insulating phases is controlled  
by a finite-resistance unstable fixed point. 

The theory is internally consistent: there are no divergences in the 
interaction amplitudes at finite temperatures. 

The two-stage route (1984) to the MIT transition (first spins, next 
charges) has been revised.

The spin-susceptibility close to the transition diverges. The g-factor 
remains finite => this divergence is not related to any magnetic 
instability.

Numerically the parameters of the fixed point appeared to be small. This 
gives arguments in favor that the 2-loop calculations are adequate and 
sufficient in the large-N limit.
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