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Outline:

• Control and read-out with Few Electrons

• Measuring Spin Relaxation Time

• Fast Control of Exchange Interaction

• Swap Operation and Rabi Oscillations of Spin States

• Spin Echo, Measurement of T2

quantum
 control
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Allowed and forbidden transitions in
artificial hydrogen and helium atoms
Toshimasa Fujisawa*, David Guy Austing*†, Yasuhiro Tokura*,
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Single Shot Readout
Gives Similar T1 times for 
Zeeman Split Spin Levels

Delft Group



Spin Relaxation and Dephasing: The Two-Electron System

J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, 
M.D. Lukin, CMM (2005)
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High-bandwidth dilution refrigerator

Pulses with 1ns rise time applied 
using Tektronix AWG 520

arbitrary waveform generators 



Pulsed-Gate Measurement of Spin Relaxation

A. C. Johnson, J. R. Petta, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM  Nature 425, 925 (2005)
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Spin relaxation:
Getting Stuck in (1,1)

In “measurement triangle”
dark: transition to (0,2) occurs
light: transition to (0,2) blockaded 

A. C. Johnson, J. R. Petta, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM  Nature 425, 925 (2005)



Spin relaxation:
Getting Stuck in (1,1)
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Field dependence of 
relaxation from (1,1) to (0,2)S.

Dominated by
Hyperfine
Interaction

Dominated by
Thermal

Activation
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c) B=0
τ=10 µs

a) B=100 mT
τ=10 µs

(1,1)

(0,1) (0,2)

(1,2)

B=100 mT

B=0 mT

inelastic thermal

Field dependence of 
relaxation from (1,1) to (0,2)S.

A. C. Johnson, J. R. Petta, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM  Nature 425, 925 (2005)
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Measuring Spin Dephasing (T2*): Time-domain Interferometry

J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM Science (in press) (2005)
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Measuring Spin Dephasing (T2*): Time-domain Interferometry

note:
t is much 
larger
than in 
relaxation
experiment 
to allow
rapid 
switching

J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM Science (in press) (2005)
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dephasing causes failure
 to return to (0,2)

Measuring Spin Dephasing (T2*): Time-domain Interferometry
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   S - T0 degeneracy

E(1,1)S
∼ E(1,1)T0

at large ε

so that t2/|ε| ≈ gµBBnuc.

E
pattern of spin relaxation

B

0
dark: returns to (0,2)
light: gets stuck in (1,1)

0E(1,1)S
∼ E(1,1)T0

E(1,1)S
∼ E(1,1)T+

E(1,1)S
= E(1,1)T+

   S - T+ degeneracy
where

E(1,1)S
= −

√
(ε/2)2 + t2

gµBB0 ≈ t2/|ε|

B
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(1,1)T+(1,1)S
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E(1,1)T+
= −ε/2 − mgµBB

,
.



J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM Science (in press) (2005)
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ε

ε > 0

ε < 0

E(1,1)S
∼ E(1,1)T0

E(1,1)S
∼ E(1,1)T+

Probability for separated singlet to be in a found in a 
singlet state after 200 ns.

S - T+ degeneracy occurs at

J(ε) = gµBB
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Measuring Spin Dephasing (T2*)
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Universal Quantum Computation with Spin-1=2 Pairs and Heisenberg Exchange

Jeremy Levy
Center for Oxide-Semiconductor Materials for Quantum Computation, and Department of Physics and Astronomy,

University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, Pennsylvania 15260
(Received 23 January 2001; published 17 September 2002)

An efficient and intuitive framework for universal quantum computation is presented that uses pairs
of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to
produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled
�-phase shift, compared to nineteen for exchange-only proposals employing three spins. Evolved from
well-studied decoherence-free subspaces, this architecture inherits immunity from collective decoher-
ence mechanisms. The simplicity and adaptability of this approach should make it attractive for spin-
based quantum computing architectures.

DOI: 10.1103/PhysRevLett.89.147902 PACS numbers: 03.67.Lx, 75.10.Jm, 89.70.+c

Quantum computation involves the initialization, con-
trolled evolution, and measurement of a quantum system
consisting of n two-level quantum subsystems known
as qubits [1]. In the spirit of Feynman’s seminal work
in this area [2], one may regard a real quantum object
as a dedicated quantum computer, able to compute its
own behavior in real time using a single quantum gate —
the unitary operator that is generated from its own
Hamiltonian. To construct a universal quantum computer,
the approach taken is analogous to classical computers:
quantum algorithms are written in terms of an elemen-
tary set of logical qubits and qugates that are known to
generate all possible unitary operations [3]. The logical
qubits and qugates are then ‘‘simulated’’ by physical
qubits and qugates.

It is highly desirable from an experimentalist’s per-
spective to use the smallest possible set of physical qu-
gates, since each brings its own complexities and
difficulties. The Heisenberg exchange (ĤHij � JŜSi � ŜSj)
and Zeeman magnetic (ĤH�

i � gŜS�
i B

�) interactions figure
prominently in proposals that employ electron [4–6] or
nuclear [7] spin physical qubits. (Spins are indexed by
subscripts, Cartesian coordinates are indexed by super-
scripts, ŜS�

i are spin-1/2 operators that satisfy �ŜS�
i ; ŜS

�
i � �

i"���ŜS�
i , and �h � �B � 1.) Using a terminology appro-

priate for electron spin, universal quantum computation
requires temporal control over a minimum of n� 1 two-
body exchange operators and two one-body magnetic
operators. Experimentally, these physical qugates are
modulated via coupling constants that are controlled
by classical (e.g., electric or magnetic) fields. For elec-
tron spins, the exchange strength J is controlled by the
electron charge, which is in turn controlled by applied
electric fields [4,7]; the Landé g factor can be controlled
by the choice of surrounding medium [4], and a variety
of magnetic inductions B� are available. The Heisen-
berg exchange and Zeeman rotation coupling constants
are modulated in time to produce corresponding uni-
tary operators êeij��� � exp��i�ĤHij=J� and r̂r�i ��� �

exp��i�ĤH�
i =gB

��. These physical qugates are combined
to create logical qugates that are known to be uni-
versal [3]. The choice of physical qugate sets is not
unique: controlled-NOT (cNOT) and negative-AND
(nANDjabi � ����a^b�jabi), a controlled phase shift of
�, are related by a basis change for the second qubit
ûucNOT � r̂ry2���=2�ûunANDr̂r

y
2��=2�. The nAND logical qu-

gate can be expressed in terms of Heisenberg and Zeeman
physical qugates [4]:

ûunAND � r̂rz2���=2�r̂rz1��=2�êe12��=2�r̂rz1���êe12��=2�: (1)

Recently, there has been a great deal of theoretical
activity involving decoherence-free subspaces [8] (DFS).
In this framework, qubits are identified with particular
subspaces of c physical qubits that commute with a par-
ticular symmetry of the time-independent full Hamil-
tonian (e.g., rotational symmetry) [9]. The consequences
of this requirement are striking: in forming qubits from a
two-dimensional subspace of c spin-1/2 physical qubits
with a definite total (z component of) angular momentum
m [known as DFSc�m�], exchange interactions are trans-
formed into magnetic interactions and the exchange in-
teraction becomes universal. One might think that all of
the exchange interactions would be consumed in the
process, but for c > 2 there are enough left over for
universal quantum computation. DiVincenzo et al. have
found 19 to be the minimum number of physical qubit
operations (not counting one-qubit rotations) required to
implement cNOT with c � 3, and Heisenberg exchange
[10]. Logical qubit rotations generally require three or
four physical qugate operations, depending on the degree
of coupling within the qubit.

One might wonder why logical qubits formed from
spin-1/2 pairs are not used. The only possible logical
qubit is DFS2�0�, spanned by fj0iQ � j01iC; j1iQ �
j10iCg. Heisenberg exchange between the two physical
qubits produces rotations about the logical qubit X
axis [11]: ĤH12 � �j01ih10jC 	 j10ih01jC�=2 � �j0ih1jQ	
j1ih0jQ�=2 � �̂�X

1 ; �̂�A
Q generates unitary rotations on qubit
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An efficient and intuitive framework for universal quantum computation is presented that uses pairs
of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to
produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled

FIG. 1. (a) Logical qubit Q formed from the Sz � 0 subspace
of two spin-1/2 physical qubits with different Landé g factors
g1 (gray) and g2 (white). Heisenberg coupling within the
logical qubit is represented by a solid black line. (b) Two
logical qubits coupled via Heisenberg exchange, represented
by a solid gray line.
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be found in a singlet after time S

J. R. Petta,  et al. (2005)
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J. R. Petta,  et al. (2005)
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Spin Echo in S - T0 basis
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carbon nanotube

rf SET

depletion
gates

M. J. Biercuk, et al. [in collaboration with R. Clark, UNSW] (in preparation).

Nanotube-Based Single Electron Device with Fast Charge Sensor
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