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A number of recent experiments report spin polarization in quantum wires in the absence of magnetic fields. These
observations are in apparent contradiction with the Lieb-Mattis theorem, which forbids spontaneous spin polarization
in one dimension. We show that sufficiently strong interactions between electrons induce deviations from the strictly
one-dimensional geometry and indeed give rise to a ferromagnetic ground state in a certain range of electron densities.
At higher densities, more complicated spin interactions lead to a possibly novel ground state.
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Why ask this question at all ...

Conductance quantization in Quantum Wires
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Motivation

Why ask this question at all ...

e Experiment ll:

conductance anomalies at low density
 additional structure
at 0.7G, (shortwires) or 0.5G, (long wires)

 seee.g. Thomas et al., Phys. Rev. B 61, R13365 (2000)
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e spontaneous spin polarization?

BUT ...
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Lieb-Mattis theorem

In 1D,
the ground state of an interacting electron system
possesses minimal spin.

E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).

QUANTUM WIRE:

not a purely one-dimensional system ...
e parabolic confining potential:

NO INtEraclionS  ———————
strong interactions?
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Quantum wires at low density: Wigner crystal

at low electron densities N,
Interaction energy (~ N,) dominates over Kinetic energy (~ nez)

= formation of (classical) Wigner crystal
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Coulomb interaction: « confining potential:
1L 2.2
Vint = — Z ' Veonf = EmQ Zyz
€ i< |rz — 1| i

formation of zig-zag chain favorable when V. . of order V_ ¢
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Z1g-zag chain

Viri (Fo) = Veons (Fo) = E; = characteristic length scale I,
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e structure v e spin properties ?

Spin interactions in a Wigner crystal
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e to a first approximation, spins do not interact ...

« BUT:
weak tunneling through Coulomb barrier

= exponentially small

exchange constants J
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Exchanges in a zig-zag chain

e 1D chain: (AF) nearest-neighbor exchange

J
e Zig-zag chain: e e $ * e e

— In addition, next-nearest neighbor exchange
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Frustrated Heisenberg spin chain
Hp = %Z [J1Pj 1 + J2P;j 2]
use P;; = % + 25;5;
e spin Hamiltonian: H = » (J1 S;S,;41 4+ J2 S;S;42)
e next-nearest neighbor exchai7nge J, causes frustration

« phase diagram J,

[ Majumdar & Ghosh, Haldane, Eggert,
White & Affleck, Hamada et al., Allen et al.,
Itoi & Qin, ... ]

J,<0.24... J;: weak frustration
— the groundstate is antiferromagnetic

J,>0.24... J; : strong frustration
— the ground state is dimerized

dimerization d = (S;(S;—_1 — S;j41)) J
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Exchanges in a zig-zag chain

e 1D chain: (AF) nearest-neighbor exchange

J
e Zig-zag chain: e e $ * e e
— In addition, next-nearest neighbor exchange
JV)? @
$._.§ o

J
2
— Increase distance between rows — equilateral configuration

cf. 2D Wigner crystal:

) RING EXC HANG ES (Roger 84, Bernu, Candido & Ceperley 01,
Voelker & Chakravarty 01, ...)
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Ring exchanges

cyclic exchange of | particles: le'-'jl = Piliz Pj2j3 Pj|_1j|

ring exchange of even number of particles: antiferromagnetic

ring exchange of odd number of particles: ferromagnetic
(Thouless 1965) j+1 j+3

T S

Hamiltonian: ; 2

1
Hp = 52 [11Pjj + 2P = J3(Fj i jro + Pro i )
j

TJa(Pj a2 + Pra s i) — -
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Frustrated Heisenberg spin chain
+ 3-particle ring exchange

1
Hp = 3 > [J1Pj a1 + JoPj o — J3(Pj 1 P o + Pio i1 P )]
j

+ nearest neighbor exchange: J;=J;-2J,4

» next-nearest neighbor exchange: J, = J, - Jj

e spin Hamiltonian: i
H =3 (J18;841 Di
J

+J> S;S,42)

e phase diagram >
[ Majumdar & Ghosh, Haldane, Eggert,

White & Affleck, Hamada et al., Allen et al.,
Itoi & Qin, ... ]
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Computation of exchange constants

strength of interactions is characterized by

_TO_Q met 1 2/3
s T T\ or22 R

(where ag Bohr’s radius ~ 100A in GaAs)

use WKB at o > 1 [note: re~rq,/V]

imaginary-time action S = hn./rqo with

2

n{r;(7)} = fd'r Z (Ig +yf) +Z |rjir?;|

A T j<i

confinement Interaction
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Numerical results |

« exchange constants: [Jl = J;" exp [—771\/7“9]}

* solve equations of motion for various exchange processes
numerically

2-
1.8}
* nearest L6l
and next-nearest
neighbor L
as well as Sl
3-, 4-, 5-, 6-, M n:
and 7-particle it *A L
. p L 0 ] ] O L
ring exchanges
D.B' 1 1 1 I 1 1 1 1 1
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V

« dominant exchange: J; —» J; — J,
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Heisenberg spin chain with
nearest and next-nearest neighbor exchange
H = > (J18;8j+1+ J28;8;42)

J -
with  nearest neighbor exchange: J;=J;-2J,

next-nearest neighbor exchange: J,=J,- J;

—~

J,>0: frustration — Jo = 0.24J;

—~

J,<0: v
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Numerical results Il

“spectators” participate in exchange process

AN

12 spectators included
on either side
of the exchanging particles

—> - smaller values 7,

Argonne - November 17, 2005 16



1.8

1.7

1.6

1.5

Numerical results Il
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e.g.:

Numerical results Il

v=1.6

1.3 .

12+ ¢ in3
M — n,
A —A A n

'I.‘I | 1 | | 1 1 | | 1 | 4

O 2 4 6 8 10 12 14 16 18 20 22 24
Number of spectators

Argonne - November 17, 2005

18



—> « J,wins over J, at large densities! il L
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Numerical results Il
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» 4-particle ring exchange generates 4-spin interaction:
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V
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4-particle ring exchange

PRELIMINARY RESULTS:
exact diagonalization

spin

of the ground state

for 12 spins

(periodic boundary conditions)

2 0 2

4 i
3.1,
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What about experiment? ...
... Are quantum wires ferromagnetic?

« Are interactions in realistic quantum wires strong enough?
o strength of interaction”™ controlled by confining potential:

-2/3
rqg oc 2
2 types of quantum wires:

« cleaved-edge overgrowth:

steep confining potential — ro<1

o split gate:
shallow confining potential — o > 1
(e.g. Thomas et al., Phys. Rev. B 61, R13365 (2000): F,=3—16)
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Prefactors (preliminary)

° exchange constants:

o2 1/2
Jl = Jl* exp [ IRVAS ] where Jl — —szl (nl ) TQ5/4
eap 2T
(Gaussian fluctuations around classical exchange path)

10

No spectators

100

e | phase diagram™
stability
of the ferromagnetic groun

Prefactors
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Conclusions & Outlook

(a) v<0.78 (b) v=0.80
J2
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A ferromagnetic ground state in qguantum wires
IS possible at strong enough interactions.

and lead to ferromagnetism
In a certain range of electron densities.

\

The interactions induce deviations from one-dimensionality

J
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Conclusions & Outlook

TO DO ...

EXPERIMENT:
iIdeal devices to observe spontaneous spin polarization:
split-gate wires with widely separated gates
= shallow confining potential = large I

THEORY:
compute prefactors (under way)
explore zig-zag chains with 4-particle ring exchange
conductance?
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Conclusions & Outlook
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A ferromagnetic ground state in qguantum wires
IS possible at strong enough interactions.

and lead to ferromagnetism
In a certain range of electron densities.

\

The interactions induce deviations from one-dimensionality

J
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What about experiment? ...
... Does ferromagnetism lead to G =0.5 G,?

e coupling of spin and charge excitations due to leads

Hs= >, [D_Jx(G+a(t)) S;S;ty
k=12 | j

» reflection of spin excitations

J
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Summary

Can the ground state of the electron system
In a quantum wire be ferromagnetic?

YES - for sufficiently strong interactions,
there is a range of electron densities,
where the electrons form a zig-zag Wigner crystal
and the spin interactions due to 3-particle ring exchange
make the system ferromagnetic
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