Surface Criticality and Multifractality in the Spin Quantum Hall System

Arvind R. Subramaniam

James Franck Institute, University of Chicago,
5640 S.Ellis Ave. Chicago IL 60637

Abstract

We examine the surface of a two-dimensional system exhibiting the spin quantum Hall transition. A supersymmetric (SUSY) formalism enables us to map our surface problem to a classical percolation model, similar to the scheme of Gruzberg, Ludwig and Read [Phys. Rev. Lett. 82, 4524 (1999)], with reflecting boundary conditions but with the full intact supersymmetry at the surface. Through this mapping, we are able to calculate the surface multifractal exponents, Δ_s^2 and Δ_s^3, of the wavefunctions. In addition, we also extract the surface scaling exponents of thermodynamic and transport quantities.
Surface Criticality and Multifractality in the Spin Quantum Hall System

Arvind R Subramaniam (Chicago) A D Mirlin (Karlsruhe)
Ilya A Gruzberg (Chicago) F Evers (Karlsruhe)
Andreas W W Ludwig (Santa Barbara) Mildenberger (Karlsruhe)
Outline

• L-D transitions and Disordered Electronic Systems.

• Surface Criticality and Multifractality.

• Analyzing The Spin Quantum Hall Transition using SUSY.

• Calculation of Surface Exponents.

• Summary.
Localization-Delocalization (LD) Transitions

Metal ↔ Insulator - induced by disorder.
No obvious broken symmetry.
No formal order parameter.

Examples:
Anderson Transition
Integer Quantum Hall Effect.
Integer Quantum Hall Effect

Electrons in 2D – strong $\perp \vec{B}$ field.

Plateau Transition Theory?

i. Pruisken’s Non-linear Sigma Model

ii. Chalker-Coddington Network Model

iii. Antiferromagnetic Superspin Chain (N. Read)

(Paalonen, Tsui, Gossard 1982)
Disordered Electronic Systems

<table>
<thead>
<tr>
<th>Symmetry Class</th>
<th>Time Reversal</th>
<th>Spin Rotation</th>
<th>Additional Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (GUE)</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>AI (GSE)</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>AII (GOE)</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>AIII</td>
<td>×</td>
<td>×</td>
<td>Particle-hole</td>
</tr>
<tr>
<td>BDI</td>
<td>✓</td>
<td>✓</td>
<td>Particle-hole</td>
</tr>
<tr>
<td>CII</td>
<td>✓</td>
<td>×</td>
<td>Particle-hole</td>
</tr>
<tr>
<td>C</td>
<td>×</td>
<td>✓</td>
<td>Particle-hole</td>
</tr>
<tr>
<td>CI</td>
<td>✓</td>
<td>✓</td>
<td>Particle-hole</td>
</tr>
<tr>
<td>D</td>
<td>×</td>
<td>×</td>
<td>Particle-hole</td>
</tr>
<tr>
<td>DIII</td>
<td>✓</td>
<td>×</td>
<td>Particle-hole</td>
</tr>
</tbody>
</table>

(Altland and Zimbrauer 1997)

IQHE
Anderson Localization
Spin Quantum Hall
(Senthil et al 1998)
Multifractality

\[\left\langle |\psi(r)|^{2q} \right\rangle \sim L^{-\tau_q - d} \]

\[\tau_q = d(q - 1) + \Delta_q \]

Metal: \(\Delta_q = 0 \)

Insulator: \(\tau_q + d = 0 \)

Multifractal Wavefunction Intensity

from Huckestein
Surface Criticality

- Surface breaks translation symmetry.
- When correlation length diverges, large scale geometry of the system is important.
- Even mean field theory gives different exponents in the presence of a boundary.

Eg. Bulk: \(G(r_1, r_2) \sim r_1^{d+2} r_2^{-d} \)

Surface: \(G(r_1, r_2) \sim r_1^{-d} r_2^{d+2} \)
SQH Network Model

Class C Network models:

Hamiltonian SU(2) invariant.

$U^\dagger \sigma_y U = \sigma_y \rightarrow \text{Sp}(2n)$ scattering matrices. Our case $n = 2$.

Polar Decomposition:

$$S = \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix} \begin{pmatrix} \sqrt{1-T^2} & T \\ -T & \sqrt{1-T^2} \end{pmatrix} \begin{pmatrix} U_3 & 0 \\ 0 & U_4 \end{pmatrix}$$

(Kagalovsky 1999)
Double links ($\sigma = \uparrow, \downarrow$) connecting nodes of two kinds, A and B.

Nodes diagonal in spin indices. All A (B) nodes have same scattering matrices.

Disorder only on links \rightarrow random SU(2).

$$t_{A\sigma}^2 + t_{B\sigma}^2 = 1 \rightarrow \text{isotropic network.}$$

$$t_{A\sigma} = t_{B\sigma} : \text{critical point.}$$

$$t_{\uparrow} = t_{\downarrow} : \text{SQH}$$
Second Quantized Description

Each uplink (downlink):
2 sets of bosons \(b_\sigma b_\sigma^\dagger \) \(\widetilde{b}_\sigma \widetilde{b}_\sigma^\dagger \)
2 sets of fermions \(f_\sigma f_\sigma^\dagger \) \(\widetilde{f}_\sigma \widetilde{f}_\sigma^\dagger \)
(\(\sigma = \uparrow \) and \(\downarrow \))

Key Point:
No separate operators for advanced Green’s functions
\(G_A = - (\varepsilon R \varepsilon)^T \)

(Gruzberg, Ludwig & Read 1999)
\[B = \frac{1}{2}(b_\uparrow \uparrow b_\uparrow + b_\downarrow \downarrow b_\downarrow + 1), \quad Q_3 = \frac{1}{2}(f_\uparrow \uparrow f_\uparrow + f_\downarrow \downarrow f_\downarrow - 1) \]

\[Q_+ = f_\uparrow \uparrow f_\downarrow \downarrow, \quad Q_- = f_\downarrow \downarrow f_\uparrow \uparrow, \]

\[V_+ = \frac{1}{\sqrt{2}}(b_\uparrow \uparrow f_\downarrow \downarrow - b_\downarrow \downarrow f_\uparrow \uparrow), \quad W_- = (V_+)\dagger, \]

\[V_- = -\frac{1}{\sqrt{2}}(b_\uparrow \uparrow f_\uparrow \uparrow + b_\downarrow \downarrow f_\downarrow \downarrow), \quad W_+ = -(V_-)\dagger. \]
Supersymmetry

\[(J_{2i-1} + \bar{J}_{2i})V_{2i-1,2i} = V_{2i-1,2i}(J_{2i-1} + \bar{J}_{2i})\]
\[(\bar{J}_{2i} + J_{2i+1})V_{2i,2i+1} = V_{2i,2i+1}(\bar{J}_{2i} + J_{2i+1})\]

SURFACE:

Reflecting boundary conditions: still full supersymmetry
Disorder Averaging

SU(2) averaging projects infinite dimensional Fock space of bosons and fermions onto the fundamental (dual) 3 dimensional representation of sl (2|1) on the uplinks (downlinks).

Percolation Mapping

\[\pi\left(\frac{1}{2}, \frac{1}{2}\right) \otimes \pi\left(-\frac{1}{2}, \frac{1}{2}\right) = \pi(0,0) + \pi(0,1) \]

\[[V_{12}] = t_A^2 P_s + (1 - t_A^2)I \otimes I \]

\[[V_{12}] = t_A^2 P_s + (1 - t_A^2)I \otimes I \]

\[[V_{23}] = t_B^2 P_s + (1 - t_B^2)I \otimes I \]

\[V_{12} = t_A^2 + (1 - t_A^2) \]

\[V_{23} = t_B^2 + (1 - t_B^2) \]
Equivalent Mapping:

- Q=1 Potts Model.

Two relevant scaling exponents:

- $x_{1b} = \frac{1}{4}$
- $x_{1s} = \frac{1}{3}$
Physical Quantities

Green’s Function:

\[G_{\alpha \beta}(r_1, r_2) = S \text{Tr} \ b_\alpha(r_1) b_\beta^\dagger(r_2) U \]

Strategy:

Express physical quantities in terms of Green’s functions, then write these as disorder averaged \text{sl}(2\|1)\ generators.

Evaluate in the fundamental representation to find equivalent percolation probabilities.
Thermodynamic Exponents

Density of States:

\[\langle \rho(r_1, \epsilon) \rangle = \frac{1}{4\pi} \langle \text{Tr} G_R(r_1, r_1, z) - \text{Tr} G_A(r_1, r_1, z) \rangle \]

\[= \frac{1}{2\pi} \langle \text{Tr} G_R(r_1, r_1, z) - 1 \rangle \]

\[= \frac{1}{2\pi} \langle 2B(r_1) \rangle \]

\[= \frac{1}{2\pi} \left[1 - \sum_N P(r_1; N) \cos 2N\epsilon \right] \]

Bulk:

\[\rho(\epsilon) \propto \epsilon^{x^b_1/(2-x^b_1)} = \epsilon^{1/7} \]

Surface:

\[\rho(r_1, \epsilon) \propto \epsilon^{x^s_1/(2-x^b_1)} = \epsilon^{4/21} \]
Transport Exponents

Diffusion Propagator:
\[\langle \Pi(r_1, r_2) \rangle = \langle \text{Tr} \left[G_R(r_1, r_2) G_A(r_2, r_1) \right] \rangle = -2 \langle V_-(r_1) W_+(r_2) \rangle \]

Point-Contact Conductance:
\[\langle g_{\text{point}}(r_1, r_2) \rangle = \langle f_{\uparrow}^\dagger(r_1) f_{\downarrow}^\dagger(r_1) f_{\downarrow}(r_2) f_{\downarrow}(r_2) \rangle = \langle Q_+(r_1) Q_-(r_2) \rangle \]

\(r_1 \) and \(r_2 \) in bulk:
\[\sim r^{-2x_{1b}} \sim r^{-1/2} \]

\(r_1 \) and \(r_2 \) on surface:
\[\sim r^{-2x_{1s}} \sim r^{-2/3} \]

\(r_1 \) in bulk and \(r_2 \) on surface:
\[\sim r^{-x_{1b} - x_{1s}} \sim r^{-7/12} \]
Multifractal Exponents

\[\langle |\psi(r)|^{2q} \rangle \sim L^{-\tau_q - d} \]

\[\tau_q = d(q - 1) + \Delta_q \]

Away from criticality:

\[L^{2q} \langle |\psi(r_1)|^2 |\psi(r_2)|^2 \cdots |\psi(r_q)|^2 \rangle \sim \left(\frac{r}{\xi_\epsilon} \right)^{\Delta_q} \quad r \leq \xi_\epsilon \]
(2\pi)^2 \tilde{D}^2 (r_1, r_2)

= \left\langle \sum_{ij\alpha\beta} |\psi_{i\alpha}(r_1)|^2 |\psi_{j\beta}(r_2)|^2 \delta(\epsilon_1 - \epsilon_i)\delta(\epsilon_2 - \epsilon_j) \right\rangle

= 4 \sum_N \left[1 - z^{2N} \right] P(r_1, r_2, ; N)

+ 4 \sum_{N,N'} \left[1 - z^{2N} \right] \left[1 - z^{2N'} \right] \left[P_-(r_1, r_2; N, N') \right]

(Mirlin, Evers & Mildenberger 2003)

Δ_2 calculation: $z = e^{-\gamma} \rightarrow 1$: exact cancellation.

$P(r_1, r_2; N) \sim N^{-25/21}r^{-1/3}$, \quad $r \equiv |r_1 - r_2| \lesssim N^{4/7}$.
Multifractal Exponents

$\Delta_2 = -1/4$ $\Delta_2 = -1/4$ $\Delta_2 = -1/3$

Δ_3 calculation: surprising!

$\Delta_3 = -3/4$ $\Delta_3 = -5/6$ $\Delta_3 = -11/12$ $\Delta_3 = -1$
Network Simulation

Δ_2 – 0.5 % deviation

Δ_3 - 6 % deviation

(Evers, Mildenberger, Mirlin)
Summary

• New paradigm – Criticality and Multifractality at the surface in LD transitions.
• Illustration in the spin quantum Hall case.
Current Work

- Surface behavior in other LD transitions, esp. Integer Quantum Hall.
- Understanding surface multifractality.
Acknowledgement

- Ilya Gruzberg, A W W Ludwig, A D Mirlin.
- Subrahmanyan Chandrasekhar Memorial Fellowship, University of Chicago.
- Robert G. Sachs Fellowship, University of Chicago.

Thank You