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Abstract

We examine the surface of a two-dimensional system exhibiting the spin quantum Hall transition.

A supersymmetric (SUSY) formalism enables us to map our surface problem to a classical perco-

lation model, similar to the scheme of Gruzberg, Ludwig and Read [Phys. Rev. Lett. 82, 4524

(1999)], with reflecting boundary conditions but with the full intact supersymmetry at the surface.

Through this mapping, we are able to calculate the surface multifractal exponents, ∆s
2 and ∆s

3, of

the wavefunctions. In addition, we also extract the surface scaling exponents of thermodynamic

and transport quantities.
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Outline

• L-D transitions and Disordered Electronic Systems.

• Surface Criticality and Multifractality.

• Analyzing The Spin Quantum Hall Transition using SUSY.

• Calculation of Surface Exponents.

• Summary.



Localization-Delocalization (LD)Transitions

Metal ↔ Insulator - induced by disorder.
No obvious broken symmetry.
No formal order parameter.

Examples:
Anderson Transition
Integer Quantum Hall Effect.



Integer Quantum Hall Effect

Plateau
Transition

(Paalanen, Tsui, Gossard 1982)

Electrons in 2D – strong ⊥ B field.

Plateau Transition Theory ?

i. Pruisken’s Non-linear Sigma Model

ii. Chalker-Coddington Network Model

iii. Antiferromagnetic Superspin Chain (N. Read)

ε

Extended States

Localized States
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Disordered Electronic Systems

Particle-hole×DIII
Particle-hole××D
Particle-holeCI
Particle-hole×C
Particle-hole×CII
Particle-holeBDI
Particle-hole××AIII

AII (GOE)
×AI (GSE)
××A (GUE)

Additional 
Symmetry

Spin 
Rotation

Time 
Reversal

Symmetry 
Class

Anderson Localization

IQHE}
Spin Quantum Hall

(Altland and Zirnbauer 1997)

(Senthil et al 1998)



Multifractality

from Huckestein

Multifractal Wavefunction Intensity

Wegner (1980)



Surface Criticality

• Surface  breaks translation symmetry.

• When correlation length diverges, large scale geometry of the system is 

important.

• Even mean field theory gives different exponents in the presence of a 

boundary.

Eg. Bulk :

Surface :



SQH Network Model

A

B

REFLECTING BOUNDARY

Class C Network models:

Hamiltonian SU(2) invariant.

UTσyU = σy  → Sp(2n) scattering matrices. Our case n = 2.
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(Kagalovsky 1999)



Double links (σ = ↑,↓) connecting nodes of two kinds, A 
and B.

Nodes diagonal in spin indices. All A (B) nodes have 
same scattering matrices. 

Disorder only on links → random SU(2).

→  isotropic network.

: critical point.

: SQH

A

B

REFLECTING BOUNDARY



Second Quantized Description

Each uplink (downlink):
2 sets of bosons 
2 sets of fermions
(σ = ↑ and ↓) 

(

)(

)
A

B

x

1 2 3 4 5 6 7 8

Key Point:

No separate operators for advanced Green’s functions :GA = - (εGR ε)T

Evolution Operator U :

Time ordered (V12V23V34…)

(Gruzberg, Ludwig & Read 1999)



sl (2|1) ≡ osp (2|2) Superalgebra



Supersymmetry

SURFACE:

Reflecting boundary conditions:  still full supersymmetry



Disorder Averaging
SU(2) averaging projects infinite dimensional Fock
space of bosons and fermions onto the fundamental 
(dual) 3 dimensional representation of sl (2|1)  on the 
uplinks (downlinks).

Percolation Mapping



Equivalent Mapping:

• Q=1 Potts Model.

Two relevant scaling exponents:



Physical Quantities

Green’s Function: 

Strategy:

Express physical quantities in terms of Green’s 
functions, then write these as disorder averaged 
sl(2|1) generators.

Evaluate in the fundamental representation to find 
equivalent percolation probabilities.



Thermodynamic Exponents

Density of States:

Bulk: Surface:



Transport Exponents

Diffusion Propagator:

Point-Contact Conductance:



Multifractal Exponents

Away from criticality:



Multifractal Calculation

∆2 calculation:  z=e-γ → 1:  exact cancellation.

(Mirlin, Evers & Mildenberger 2003)



∆3 calculation: surprising!

∆3 = -3/4 ∆3 = -5/6 ∆3 = -11/12 ∆3 = -1

∆2 = -1/4 ∆2 = -1/4 ∆2 = -1/3

Multifractal Exponents



Network Simulation

(Evers, Mildenberger, Mirlin)

∆2 – 0.5 % deviation

∆3 - 6 % deviation



Summary

• New paradigm – Criticality and 

Multifractality at the surface in LD 

transitions.

• Illustration in the spin quantum Hall case.



Current Work

• Surface behavior in other LD transitions, 

esp. Integer Quantum Hall.

• Understanding surface multifractality.



Acknowledgement

Ilya Gruzberg, A W W Ludwig, A D Mirlin.
Subrahmanyan Chandrasekhar Memorial Fellowship, 
University of Chicago.
Robert G. Sachs Fellowship , University of Chicago.

Thank You


