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Time evolution in non-adiabatic regime?
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Describe the response of a fermionic condensate to a sudden 
perturbation at times t ετ=



Physical realizations Feshbach resonance
1) Ultra-cold fermions (40K, 6Li).

Regal et. al. (JILA, 40K )

Abrupt change of the BCS coupling 
constant

 'g g→

01/ 0.1 ms∆ ;

2) Superconducting qubits.
Nonequilibrium conditions can be 
generated by fast voltage pulses

0 g a∝

Nakamura, Pashkin &Tsai01/ 10 ps∆ ;

Slow energy relaxation



Problem: At  t <0 the condensate is prepared in a nonequilibrium
state by a sudden perturbation

( 0) ground state for coupling 't gΨ = =

Determine the time evolution for t >0

( ) ?    ( ) ?t tΨ = ∆ =

Example: (cold fermions) 0    't g g= →At

( 0) nonequilibrium statetΨ = =

(  nonequilibrium for the new coupling g )

Time evolution in non-adiabatic regime



Depends on the initial state ( 0 )c o n d tΨ = !!

There are only two types of initial states

Type I: | ( ) |t∆ asymptotes to a constant 0∞∆ < ∆ as t →∞

cos(2 )| ( ) | 1 tt a
t
ϕ∞

∞ ∞

∆ +∆
= +

∆ ∆

1,   a ϕ: depend on the
details of the initial state

This happens e.g. for a sudden change of coupling  'g g→
in a paired ground state

Time evolution in non-adiabatic regime ( short answer)



0∞∆ < ∆Type I: | ( ) |t∆ asymptotes to a constant

cos(2 )| ( ) | 1 tt a
t
ϕ∞

∞ ∞

∆ +∆
= +

∆ ∆

1,   a ϕ: depend on the
details of the initial state

This happens e.g. for a sudden change of coupling  'g g→
in a paired ground state

oscillates persistently with several basic frequenciesType II: | ( ) |t∆

Classification of 
initial states, can 
predict 
dynamics from 
initial state



Dynamics at times                   is non-dissipative 

Small system or spatially homogeneous initial state

t ετ=

Can use BCS model (in the presence of disorder or trapping potential)

,
j j j j i i

j i j
H n g c c c cε + +

↑ ↓ ↓ ↑= −∑ ∑

single-particle 
levels

coupling const

Given

determine

( 0)cond tΨ =

( 0)cond tΨ >
i.e. solve time-dependent Shrodinger
equation for H

Quantum, many-body, far from equilibrium

Time evolution in non-adiabatic regime ( model)
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1. Anderson’s spins

1
;     ;     

2
jz

j j jj j j j

n
K K c c K c c+ + + −

↑ ↓ ↓ ↑

−
= = =

,
2 z

j j i j
j i j

H K g K Kε + −= −∑ ∑

,
j j j j i i

j i j
H n g c c c cε + +

↑ ↓ ↓ ↑= −∑ ∑

Infinite range interactions – mean-field is exact in                   limitn →∞

2. In mean-field spins are replaced by 
their expectation values. 

( ) ( )j jt ts = K
The problem becomes classical.

,
2 z

j j i j
j i j

H s g s sε + −= −∑ ∑ * 2 2  2 z
j j j j j js u v s v u− = = −

Bogoliuobov amplitudes
P. W. Anderson, Phys. Rev. 112, 1900 (1958)



Time evolution in non-adiabatic regime

,
2 z

j j i j
j i j

H s g s sε + −= −∑ ∑Classical Hamiltonian

x y jj
i g s−∆ = ∆ − ∆ = ∑

{ },x y z
j j js s s= − Angular momentum 

Poisson brackets| s | constj =

Eqs. of motion: ( 2 , 2 ,2 )j
x y j j

d
dt

ε= − ∆ − ∆ ×
s

s

( ) ( )j jε ε≡ ≡s s sSpin distribution                                      completely determines ( )cond tΨ

Problem: Given the initial spin distribution                             
determine                       .  It is sufficient to determine

( , 0)tε =s
( , 0)tε >s ( )t∆



Time evolution in non-adiabatic regime

,
2 z

j j i j
j i j

H s g s sε + −= −∑ ∑Classical Hamiltonian

x y jj
i g s−∆ = ∆ − ∆ = ∑

{ },x y z
j j js s s= − Angular momentum 

Poisson brackets| |j =s const

Eqs. of motion: ( 2 , 2 ,2 )j
x y j j

d
dt

ε= − ∆ − ∆ ×
s

s

s s( ) s( )j jε ε≡ ≡Spin distribution                                      completely determines ( )cond tΨ
Problem: Given the initial spin distribution                             
determine                       .  It is sufficient to determine

s( , 0)tε =
s( , 0)tε > ( )t∆

Normally, would be intractable. However, BCS is integrable (Richardson, 
Gaudin). Exact solution for the dynamics: E.Y., B. Altshuler, V. Kuznetsov,

V. Enolskii.



Q: What determines whether               will relax or oscillate persistently?   
(in thermodynamic limit)

| ( ) |t∆

Generally, Fourier spectrum of             has discrete & continuum parts| ( ) |t∆

1
| ( ) | ( ) cos( ) cos( ) higer harmonics ( )

D k

i i i i
iD

t A t d B t nω ω ϕ ω ω ϕ ω
=−

∆ = + + + +∑∫
vanishes as t →∞

1
| ( ) | ( ) cos( ) higer harmonics ( ) as 

k

k i i i i
i

t F t B t n tω ϕ ω
=

∆ ≈ = + + →∞∑
quasiperiodic oscillations with k frequencies

0,   | ( ) | const
1,    periodic oscillations
2,   two frequencies

k t
k
k

∞= ∆ → ∆ =
=
=
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Frequencies of an integrable system 
depend only on integrals of motion 
(Arnold). 

Can determine the frequency spectrum from the initial state



( )
1

ˆ szL
n

j

j j

u
g u ε=

≡ − +
−∑,

2 z
j j i j

j i j
H s g s sε + −= −∑ ∑

How to determine the frequency spectrum from the initial state?

( ){ }2,L 0H u u= ∀ ( )2L u is conserved, generating 
function for integrals of motion

spectral parameter

( )2 2
2

( )L 0
( )

n

jj

P uu
u ε

= ≥
−∏

n pairs of complex conjugate 
roots – branch cuts of                             
(n - # of spins)

one frequency per each branch 
cut

has n-1 frequencies

( )2L u

| ( ) |t∆

u



( )
1

ˆ szL
n

j

j j

u
g u ε=

≡ − +
−∑

In the thermodynamic limit                 some roots merge into lines of roots, 
other pairs of roots (branch cuts) remain isolated

n →∞

How to determine the frequency spectrum from the initial state?

100n =( )2Roots of L 0ju =

(# of isolated frequencies in            ) =  (# of isolated cuts)  - 1| ( ) |t∆

( )2 0L u = easy to solve in                 limitn →∞
can do even better!

continuum part of spectrum



Stationary states (BCS eigenstates)

0s( ) B( ) s( )d
dt
ε ε ε= × =

I. Anomalous states 0∆ ≠ Align each spin along its field 

( ) ( 2 ,0, 2 )B ε ε= − ∆

s Bj jP

( )xg s dε ε∆ = ∫

2 2 2 2
2 ( ) ; 2 ( )z xs sε ∆ε ε

ε ∆ ε ∆
− −

= =
+ +

( )s ε
( )B ε ( )B ε

( )s ε gap equationtwo ways to align:

Favorable alignment – BCS ground state

x

z
( )s ε - continuous



Spin flips – excited states.

x

z ( )s εDiscontinuities in spin distribution

Stationary states (BCS eigenstates)

0s( ) B( ) s( )d
dt
ε ε ε= × =

I. Anomalous states 0∆ ≠ Align each spin along its field 

( ) ( 2 ,0, 2 )B ε ε= − ∆

s Bj jP

( )xg s dε ε∆ = ∫
( )s ε

( )B ε ( )B ε
( )s ε gap equationtwo ways to align:

2 22 ε + ∆Excitation of energy



( )2Roots of L 0ju =

100n =

Root diagram for the BCS ground state

A pair of imaginary roots at (one cut)  

Other roots are doubly degenerate, real and located between  
consecutive 

0 0,i± ∆ ∆ - ground state   gap

jε
2 2 2 22 2j j juω ε= + ∆ ≈ + ∆Frequencies of small oscill  ations

# of discontinuities in            = 0( )s ε



 'g g→Sudden change of coupling                        (not small!). Ground state gap 
increased 2.4 times!

100n =( )2Roots of L 0ju =

continuum part of spectrum

Single cut

The line of doubly degenerate real roots splits into two complex
conjugate lines

# of isolated frequencies =  # of isolated cuts  - 1 = # of discontinuities 
in            = 0( )s ε

0| ( ) |t ∞∆ → ∆ < ∆Therefore,             has continuum freq. spectrum and| ( ) |t∆



 'g g→Sudden change of coupling                        (not small!). Ground state gap 
increased 2.4 times!

100n =

cos(2 )| ( ) | 1 tt a
t
ϕ∞

∞ ∞

∆ +∆
= +

∆ ∆

1,   a ϕ: - constants

∞∆ and the full final state 
are known

decay law is universal and set by non-stationary analog of 
square root singularity

Similar to inhomogeneous line broadening in NMR

1/ t



Root diagram for an excited (anomalous) stationary state

Spin flips result in a pair of double complex roots

0( 0.4 ,0)− ∆spins in energy interval  are f lipped

2 2 2 22 2j j juω ε= + ∆ ≈ + ∆Frequencies of small oscill  ations

# of discontinuities in            = 2( )s ε

( )2Roots of L 0ju =

100n =



Sudden change of coupling                        (not small!) in an excited state 'g g→

Double complex roots split into two additional cuts

The line of doubly degenerate real roots splits into two complex
conjugate lines

# of isolated frequencies =  # of isolated cuts  - 1 = # of discontinuities 
in            = 2( )s ε

Therefore,             oscillates persistently with two basic frequencies| ( ) |t∆

( )2Roots of L 0ju =

100n =



Sudden change of coupling                        (not small!) in excited state 'g g→

oscillates persistently with two basic frequencies| ( ) |t∆

# of isolated frequencies = # of discontinuities in            = 2( )s ε

3-spin solution



2nd type of stationary states – normal states
Fermi 
ground 
state

Fermi 
excited 
state

Also stationary in mean-field

0s( ) B( ) s( )d
dt
ε ε ε= × = since ˆ( ) ( )s B zε εP P



Root diagram for the Fermi ground state

A pair of double imaginary roots at  0 0/ 2,i± ∆ ∆ - ground state   gap

2j juω =Normal freque  ncies

# of discontinuities in            = 1 (jump at Fermi level)( )s ε

One unstable mode that corresponds to 02 ,j ju iω = = ± ∆ 0| ( ) | tt e∆∆ ∝

( )2Roots of L 0ju =

100n =



A “quantum fluctuation” splits double roots

# of isolated frequencies =  # of isolated cuts  - 1 = # of discontinuities 
in            = 1( )s ε

Therefore,             oscillates periodically (one basic frequency)| ( ) |t∆

( )2Roots of L 0ju =

100n =



Time evolution starting from the Fermi ground state

2-spin solution
Barankov, Levitov, Spivak



Summary

0∞∆ < ∆
Type I: No discontinuities in the spin distribution

| ( ) |t∆ asymptotes to a constant
cos(2 )| ( ) | 1 tt a

t
ϕ∞

∞ ∞

∆ +∆
= +

∆ ∆

This happens e.g. for a sudden change of coupling in a paired ground 
state,                 . 'g g→

oscillates persistently with several basic frequenciesType II: | ( ) |t∆

Classification of states: there are only two types of initial states

# of isolated frequencies =  # of isolated cuts  - 1 = # of discontinuities 
in            ( )s ε


